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The intrinsic connectivity of the default mode network has been associated with the level of consciousness in
patients with severe brain injury. Especially medial parietal regions are considered to be highly involved in im-
paired consciousness. To better understand what aspect of this intrinsic architecture is linked to consciousness,
we applied spectral dynamic causal modeling to assess effective connectivity within the default mode network
in patients with disorders of consciousness.
We included 12 controls, 12 patients in minimally conscious state and 13 in vegetative state in this study. For
each subject, we first defined the four key regions of the default mode network employing a subject-specific
independent component analysis approach. The resulting regions were then included as nodes in a spectral dy-
namic causal modeling analysis in order to assess how the causal interactions across these regions as well as the
characteristics of neuronal fluctuations change with the level of consciousness.
The resulting pattern of interaction in controls identified the posterior cingulate cortex as the main driven hub
with positive afferent but negative efferent connections. In patients, this pattern appears to be disrupted. More-
over, the vegetative state patients exhibit significantly reduced self-inhibition and increased oscillations in the
posterior cingulate cortex compared to minimally conscious state and controls. Finally, the degree of self-
inhibition and strength of oscillation in this region is correlated with the level of consciousness.
These findings indicate that the equilibrium between excitatory connectivity towards posterior cingulate cortex
and its feedback projections is a key aspect of the relationship between alterations in consciousness after severe
brain injury and the intrinsic functional architecture of the default mode network. This impairment might be
principally due to the disruption of the mechanisms underlying self-inhibition and neuronal oscillations in the
posterior cingulate cortex.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Understanding alterations in intrinsic connectivity networks of
severe brain injury is essential for clinical purposes (Sharp et al.,
2014). Especially for the challenging assessment in disorders of con-
sciousness (Schnakers et al., 2009), that is, patients in vegetative state/
unresponsive wakefulness syndrome (Laureys et al., 2010) (VS/UWS)
and minimally conscious state (MCS), resting-state fMRI is a powerful
tool. Patients with disorders of consciousness are awake but not or
only minimal aware of their environment, therefore, showing a dissoci-
ation between awareness and arousal. For this reason, they provide the
y, University of California, Los
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unique opportunity to investigate alterations in brain processing direct-
ly related to impaired consciousness.

Previous studies revealed dysfunctional connectivity of the de-
fault mode network (DMN) in disorders of consciousness (Boly
et al., 2009), and MCS patients displaying a more preserved pattern
of network connectivity as compared to VS/UWS patients (Crone
et al., 2013; Fernandez-Espejo et al., 2010; Kotchoubey et al., 2012;
Vanhaudenhuyse et al., 2010). Moreover, deactivation of the DMN
is associated with the level of consciousness in patients (Crone
et al., 2011) and cognitive performance in healthy volunteers
(Bonnelle et al., 2012). Additionally, DMN connectivity has also
been shown to have prognostic value for comatose patients
(Norton et al., 2012). Within this network, medial parietal regions
and their connectivity with medial frontal regions have been
shown to be critically involved in alterations of consciousness after
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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severe brain injury (Crone et al., 2013; Fernandez-Espejo et al., 2011;
Laureys et al., 1999; Vanhaudenhuyse et al., 2010), during sleep
(Horovitz et al., 2009; Horovitz et al., 2008; Samann et al., 2011)
and during propofol-induced sedation (Boly et al., 2012; Fiset et al.,
1999; Monti et al., 2013).

However, most studies addressing the intrinsic function of the
DMN in altered states of consciousness have relied upon a functional
connectivity approach. While productive, the simple observation of
patterns of correlations between distant regions over time does not
provide any insight into the causal organization underlying the ob-
served correlations (Friston, 1994). In the present research, we
therefore adopt an effective connectivity approach to identify the
causal interactions between regions within the DMN, thereby
allowing amuch deeper understanding of the alterations in the func-
tional brain architecture underlying disorders of consciousness. Ef-
fective connectivity within the DMN has been investigated in
healthy volunteers employing DCM for resting-state fMRI (Di and
Biswal, 2013; Li et al., 2012). The findings highlight the role of the
posterior cingulate cortex (PCC) as a central hub within the DMN
confirming findings in previous studies proposing the PCC as a
main connector hub between distinct networks (Hagmann et al.,
2008; van den Heuvel and Sporns, 2011).

Recently, a new DCMmethod for resting-state fMRI has been intro-
duced especially suited for group comparisons. Spectral DCM is based
upon a deterministic model that generates predicted crossed spectra
which allows to asses effective connectivity engendered by the underly-
ing functional connectivity (Friston et al., 2014). The advantage of this
approach lies in its computational efficiency and, more importantly, it
also provides the opportunity to compare , in addition to effective con-
nectivity, the characteristics of, the neuronal fluctuations across groups.

In the present study, we investigated the direction of coupling
strength and specific properties of neuronal fluctuations within the
DMN in patients with disorders of consciousness using spectral DCM.
We hypothesize that the effective connectivity of the PCC and its role
as a driven hub is altered in patients and that this alteration is related
to the level of consciousness.

2. Materials and methods

The study was approved by Ethics Commission Salzburg
(Ethikkommission Land Salzburg; number 415-E/952).

2.1. Participants

In this study, 15 patients inMCS, 17 patients in VS/UWS, and 13 age-
matched healthy controls with no history of neurological or psychiatric
diseasewere investigated. This small sample of 32 patients was selected
based on the criteria of repeatedly examined and unambiguously diag-
nosed cases. Participants were scanned at the Neuroscience Institute,
Christian-Doppler-Klinik, Paracelsus Medical University, Salzburg.
From this sample, we only included subjects in further analyses with
movement parameters smaller than 3 mm translation and 3° rotation.
Moreover, we carefully controlled image realignment and segmentation
by visual inspection and only included those patients for which realign-
ment and segmentation has been successful. In consequence, three pa-
tients in MCS, four patients in VS/UWS, and one control subject were
excluded resulting in a sample of 12 healthy controls (mean age =
55; age range = 44–70; 8 female), 12 patients in MCS (mean age =
51; age range = 28–71; 6 female) and 13 patients in VS/UWS (mean
age = 54; age range = 32–73; 3 female). All patients participating in
this study were examined with the Coma Recovery Scale — Revised
(CRS-R) (Giacino et al., 2004) in a weekly interval during in-patient
stay. Classification of patients based on the diagnosis obtained with
the CRS-R at time of scanning. All patients showed preserved auditory
functioning, largely preserved brainstem reflexes, and a fairly preserved
sleep–wake-cycle as assessed by neurological examination. None of the
patients were artificially ventilated or sedated at time of scanning. Ad-
ditional information of the individual patients is listed in the Inline
Supplementary Table S1. Written informed consent was obtained
from all healthy subjects and from the guardianship of all patients ac-
cording to the Declaration of Helsinki.

Inline Supplementary Table S1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.01.037.

2.2. Data acquisition

Resting-state fMRI data were obtained using a three Tesla Siemens
TIM TRIO (Siemens AG, Munich, Germany; 250 T2*-weighted images
were obtained in descending order; 36 slices with 3 mm thickness;
FoV = 192 mm2; TR = 2250 ms; TE= 30 ms; flip angle = 70°; matrix
size = 64 × 64). Subjects were instructed to let their thoughts run
free and not to think about anything special. In addition, high-
resolution, T1-weighted MP-RAGE sequences (160 slices; slice
thickness = 1.2 mm; TR = 2300 ms; TE = 2.91 ms; voxel size =
1×1× 1.2mm; FoV=256mm2;flip angle=9°) for anatomic informa-
tion were acquired for each participant.

2.3. Preprocessing

Functional datawere preprocessed using Statistical ParametricMap-
ping (version SPM8; http://www.fil.ion.ucl.ac.uk/spm/). The first six
functional scans were considered as dummy scans and were discarded.
Preprocessing steps included the following procedures: segmentation
of the T1-weighted image to compute the gray matter images; realign-
ment to compensate for motion; unwarping; slice timing correction;
coregistration of themean echo planar imaging (EPI) to the participant's
own anatomical scan; affine-only normalization to standard stereotaxic
anatomical MNI space; data were spatially smoothed using a Gaussian
Kernel of 8 mm FWHM. Voxel size was resampled to 3 × 3 × 3 mm.
Note that affine-only normalization (i.e., no nonlinear functions) was
performed because of the partially severe and wide-spread lesions in
the patients' brains.

We additionally assessed the framewise displacement calculated
from derivatives of the six rigid body realignment parameters and the
root mean squared change in BOLD signal from volume to volume
(DVARS) (Power et al., 2012) using FSL (Jenkinson et al., 2002).
Framewise displacement and DVARS values were compared between
the three groups using One-way ANOVA with group as a factor. There
were no significant differences between groups (FD: F = 1.36, p =
0.272; DVARS: F = 2.18, p = 0.129).

2.4. Selection of regions of interest

The same four regions of the DMN (medial frontal cortex (MFC);
PCC; lateral inferior parietal lobules (IPL)) as in previous analyses
using DCM (Bastos-Leite et al., 2014; Di and Biswal, 2013; Li et al.,
2012) were selected as regions of interest (ROIs). To identify the
coordinates, independent component analysis (ICA) was performed
for each of the three groups using the Group ICA of fMRI Toolbox
(GIFT) (http://icatb.sourceforge.net/). GICA3 was used for back-
reconstruction type and 20 components were extracted. The resulting
components were spatial correlated with a template image of a meta-
analysis of DMN functional heterogeneity (Laird et al., 2009) and
verified by visual inspection. The coordinates were extracted from
each individual independent component for each of the four regions
using Talairach Daemon software and icbm2tal transform as imple-
mented in GIFT and then transformed into MNI space using GingerALE
software Version 2.3.2. See Table e-2 for coordinates of each region in
each participant. This procedure ensures that DCM analysis is per-
formed on those regions identified as functionally connected within
every individual DMN. This is particularly important because in patients
with severe brain injury the anatomical and functional organization of
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brain regions may be altered which may lead to a mis-specification of
regional activity when extracting data from coordinates based on nor-
malized brain atlases.

2.5. General linear model

The general linear model (GLM) included the six rigid body realign-
ment parameters to account for headmotion. The white matter and ce-
rebrospinal fluid mean signals were also included into the model as
regressors. In addition, the GLM contained an implicit high-pass filter
of 1/100 Hz to remove possible ultraslow fluctuations due to hardware
related drift.

2.6. Dynamic causal modeling

DCM was performed by following the steps detailed below:
(1) extraction of BOLD fMRI time series from each subject using
the individual coordinates; (2) specification of the model space
based on a fully and reciprocally connected model (see Fig. 1); (3) es-
timation of the specified model; (4) implementation of a post-hoc
model selection routine.

DCM analyseswere performedwith the DCM12 routine implement-
ed in SPM12 (Wellcome Department of Cognitive Neurology, London,
UK; http://www.fil.ion.ucl.ac.uk/spm/). To extract the BOLD fMRI time
series, volumes of interest were defined as spheres with a radius of
8 mm centered at the individual coordinates of each subject. Note that
the first eigenvectors were extracted after modeling the GLM removing
effects of head motion and low-frequency drift.

The specified model was the full and reciprocal connected model as
shown in Fig. 1. The connections between the four regions were speci-
fied as fixed connections including the recurrent connection of each
node (matrix A). This model was fitted with an estimation procedure
Fig. 1. Schematic representation of the fully and reciprocally connectedmodel. All possible
connections are displayed between the medial frontal cortex (MFC), the posterior
cingulate cortex (PCC), the left inferior parietal lobule (lIPL), and the right inferior parietal
lobule (rIPL).
using second-order statistics characterizing spectral densities over fre-
quencies, that is, complex cross spectra. Instead of predicting the
times-series itself, spectral DCM uses the Fourier transform of the
cross correlation of the time series as a data feature for prediction. For
details see Friston et al. (2014). We used this new deterministic ap-
proach in effective connectivity for investigating differences between
groups because it is not restricted to the comparison of connection
strength, but also provides the opportunity to look at differences in am-
plitude and exponent of the neuronal fluctuations (that is, the strength
and frequencies of oscillations).

Inferences about directed connectivity can proceed at two levels;
either at the level of the model or at the level of connection strengths
(parameters) under a given model. In what follows, we will pursue
analyses at both the level ofmodels and parameters. Put simply, a differ-
ence in models between groups implies that one or more connections
are absent in a quantitative sense; whereas a difference in the parame-
ters (effective connectivity) suggest that the random effects of subjects
are expressed qualitatively in terms of the connection strengths, under
the assumption that the connection exists.

To explore all possible dynamic causal models, a post-hoc model se-
lection routine (Friston and Penny, 2011) was applied to determine the
best fitting model for each group. This approach fits the full model with
all its free parameters to the given data. In a next step, the evidence for
all reduced models, that is, all possible models nested in the full model,
is approximated by effectively removing the parameters. It should be
noted that with more than 8 parameters, the post-hoc model selection
routine implements a “greedy search” over all models formed by re-
moving all permutations of the 8 parameters whose individual removal
produced the smallest reduction inmodel evidence (as computed using
the Savage–Dickey or post-hoc approximation) resulting in 28 = 256
reduced models. This post-hoc procedure achieves very similar results
as the conventional Bayesianmodel selection but ismuchmore efficient
when comparing a large model space (Friston and Penny, 2011; Rosa
et al., 2012). Results of the model selection procedure are shown as a
model posterior; the probability of a particular model being the best
compared to any other model given the group data. For inference at
the parameter space level, it is necessary that parameters are compared
within the same winning model (Seghier et al., 2010) to exclude the
possibility that between-group differences in estimated parameters
may be due to differences in model fit.
2.7. Parameter estimations

In a next step, we investigated the effective connectivity at the indi-
vidual parameter level to identify differences between various groups.
All parameters of intrinsic connectivity (DCM.Ep.A) aswell as the values
of the amplitude and exponent of neuronal fluctuations (DCM.Ep.a)
were compared between groups usingANOVApermutation tests imple-
mented in the lmPerm library in R (www.R-project.org)with group as a
factor. Post-hoc tests (additionally corrected for false-discovery rate)
were applied to all significant results. We also performed a Spearman
correlation analysis for the patients' data between the CRS-R scores
and those surviving parameters of effective connectivity and neural ac-
tivity, showing significant differences between groups after correction
for multiple comparisons to explore whether the responsiveness of a
patient is associatedwith the connectivity strength or the form and am-
plitude of neuronal fluctuations within the DMN. All p-values were
corrected for false-discovery rate. Moreover, since permutation testing
is a nonparametric test, in which the false positive rate is exactly equal
to the specified α level, we expect less than 1 false positive at
p b 0.042 uncorrected, given the 24 ANOVAs performed (that is, 12
comparisons with the intrinsic connectivity between the 4 nodes, 4
comparisons with the recurrent connectivity within the 4 nodes and 8
comparisons with the form and amplitude of neuronal fluctuations in
each node).

http://www.fil.ion.ucl.ac.uk/spm/
http://www.R-project.org
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3. Results

3.1. Post-hoc model selection

Post-hoc model selection compared the evidence of all investigated
models for each group. In all three groups, the procedure revealed the
fully connected model as the ‘winning’ model with a probability of al-
most 1 (see Fig. 2). The fully connected model has 16 free parameters
describing the intrinsic connections between nodes and the recurrent
Fig. 2. Results of the post-hoc model selection procedure. The two columns represent the log-
controls (A), patients in minimally conscious state (B), and patients in vegetative state (C). Th
intrinsic connections within nodes, respectively. In Fig. 2, the profile of
model evidences are shown with the posterior probability for each
model. In all three groups, the fullmodel (model nr. 256) has a probabil-
ity of almost 1 and a log-probability of almost 0. The next best model
(model nr. 128) has a very low probability with almost 0 for all three
groups and a log-probability of −43.6 for the control group, −36.2 for
the MCS group, and −57.4 for the VS/UWS group. To estimate the sig-
nificance of this result, the Bayes factor was calculated by dividing the
probability of the ‘winning’ model (almost 1) by the probability of the
posterior and model posterior probabilities of all evaluated models examined for healthy
e full model is the winning model in each group with a posterior probability of almost 1.
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second most probable model (almost 0) suggesting very strong evi-
dence for the winning model for each group since a Bayes factor of 3:1
is still considered as positive evidence (Kass and Raftery, 1995).
3.2. Parameter estimates

After identifying themost probable model, the specific properties of
effective connectivity within the DMN were explored at the parameter
level, that is, connectivity strength of the intrinsic connections within
and between nodes, as well as characteristics of oscillations.

Fig. 3 displays the connectivity strength and direction of each con-
nection between and within the four nodes for all three groups. Red
and blue arrows (and values) represent those connections which are
significantly different from zero in each group, while red arrows repre-
sent a positive connection strength and blue arrows a negative connec-
tion strength. Please note that the recurrent connectivity strength
within each node, indicated with blue arrows, can have negative and
positive values even though the connections strength is negative. This
is because recurrent connections are assumed to always be inhibitory
on biological constraints. In SPM12, the parameterization of the self-
connections are log-scaled and the prior expectation is fixed at −0.5
(with −0.5 ∗ exp(A); where A has a prior mean of 0 and
−0.5 ∗ exp(0) = −0.5). Consequently, a positive value means that
the self-connection is more inhibitory and a negative value means that
it is less inhibitory compared to the prior. In healthy controls, almost
all reciprocal connections (except from the lateral IPL to the MFC) are
significant. Interestingly, all driving influence from the PCC is negative.
In patients, only a few connections within the full model are significant
and none of the connections between nodes are negative.

Connectivity strength (DCM.Ep.A) as well as characteristics in the
oscillation of neuronal fluctuations (DCM.Ep.a) were compared be-
tween groups using ANOVA permutation testing with additional post-
hoc tests. Significant differences between groups in the connectivity
strength are displayed in Fig. 4A. All reported p-values are corrected
for false-discovery rate. In addition, please note that all significant re-
sults from the 24 ANOVAs performed with permutation testing were
significant at p b 0.04151, thus, we expect less than 1 false positive
(see Materials and methods section).
Fig. 3. Significant connectionswithin the fullmodel in each group. Strength anddirection of conn
left inferior parietal lobule (lIPL), and the right inferior parietal lobule (rIPL) are displayed f
vegetative state (VS/UWS). Red arrows and values indicate positive coupling, blue arrows and
significantly from zero in each group. In healthy volunteers, the PCC appears to be the main dr
interaction seems to be disrupted in patients.
One of the most important results is that the strength of the self-
connection within the PCC differs between patients; it is lower in VS/
UWS patients compared to MCS patients (see Fig. 4A). The VS/UWS pa-
tients also exhibit lower strength of inhibitory self-connectivity in the
PCC than healthy controls, while MCS patients and healthy controls do
not differ. Negative connectivity strength from the PCC to the MFC
was stronger in the control group compared to MCS and VS/UWS
(while only the difference between controls and VS/UWS is significant
at p b 0.05). In addition, negative connectivity strength from the PCC
to the left IPL was significantly stronger in the control group compared
to MCS and VS/UWS. Positive connectivity strength from the MFC to
both lateral IPL was significantly stronger in the control group com-
pared to VS/UWS. We also observed the trend that the connectivity
strength of the efferent connections from the MFC are lower in MCS
compared to controls and going towards zero in VS/UWS. However,
this trend (for the connection with the PCC in particular) is not signifi-
cant at a corrected level.

Our second important finding is a significant difference between pa-
tients in the amplitude of neuronal fluctuations in the PCC (Fig. 4B)
showing thatMCS as well as healthy controls exhibit less stronger oscil-
lations to drive the neuronal response compared to the VS/UWS.

To further explore the relation of behavioral responsiveness and
properties of effective connectivity in patients, a Spearman correlation
(two-tailed) was calculated between the CRS-R scores and those values
showing significant results in the ANOVA. All p-values were corrected
for false-discovery rate. Recurrent connectivity in the PCC correlates
positively with behavioral performance in patients (r = .48, p =
0.044).Moreover, the amplitude of neuronal fluctuations in the PCC cor-
relates negatively with the CRS-R scores of each patient (r=− .58, p=
0.015). Fig. 5 displays the correlation over both groups and for each
group separately. The overall significant correlation is reflected in the
VS/UWS but not in the MCS group.

4. Discussion

Identifying specific alterations in network interaction after severe
brain injury and relating them to specific impairments such as disorders
of consciousness has important implications for the clinical setting but
also for brain research in general (Sharp et al., 2014). Decreased
ectivity between themedial frontal cortex (MFC), the posterior cingulate cortex (PCC), the
or healthy controls (CON), patients in minimally conscious state (MCS) and patients in
values indicate negative coupling. Gray values represent connections which did not differ
iven hub receiving positive input and giving negative feedback. In contrast, this pattern of



Fig. 4. Significant differences in parameter estimates between groups. (A) Significant differences betweenhealthy controls (CON), patients inminimally conscious state (MCS) andpatients
in vegetative state (VS/UWS) in the strength of effective connectivity between themedial frontal cortex (MFC), the posterior cingulate cortex (PCC), the left inferior parietal lobule (lIPL),
and the right inferior parietal lobule (rIPL). Red arrows indicate positive values, blue arrows indicate negative values for controls. Note that means for the recurrent connectivity strength
are inhibitory with positive values indicating a stronger effect relative to prior. (B) Significant differences between groups in the amplitude of neuronal fluctuations of the posterior
cingulate cortex. Bar-plots represent means and standard errors; all p-values are corrected for multiple comparisons.
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functional (Boly et al., 2009; Crone et al., 2013; Vanhaudenhuyse et al.,
2010) as well as structural (Fernandez-Espejo et al., 2012) connectivity
of medial parietal regions in relation to the degree of impairment have
been already demonstrated by previous studies of spontaneous brain
function in disorders of consciousness. The present work is the first to
explore the relationship between causal interactions of medial parietal
regions within the DMN and disorders of consciousness by employing
DCM for resting-state fMRI.

Overall, we have reported two main findings. First, healthy volun-
teers demonstrate a DCM architecture in which the PCC is the target
of strong positive driving input from the anterior and lateral nodes
(MFC and IPL, respectively), and the source of negative driving output
towards the anterior and lateral nodes. In patients, however, the overall
strength of directed connectivity among regions in theDMN is relatively
low, and the PCC no longer appears to serve as themain driven hub. On
the one hand, all efferent connections from anterior to parietal regions
clearly show a trend towards lower influence in minimally responsive
patients and almost zero influence in unresponsive patients compared
to healthy volunteers. On the other hand, the efferent connections of
the PCC change their type of influence from positive to negative across
groups (see Figs. 3 and 4). Negative values of connectivity strength in
DCM for resting-state fMRI, that is, the rate constants of neuronal re-
sponses measured in Hz, have been typically interpreted as inhibitory
(Friston et al., 2014; Li et al., 2012). Provided that all true influences
on the specific regions have been captured by the specified DCM
model, the PCC in healthy volunteers receives excitatory input from all
other nodeswhile its feedback is inhibitory. In unconscious andminimal
conscious patients, however, this inhibitory feedback is nonexistent.We
note that our usage of the term ‘feedback’ differs from themeaning typ-
ically employed to describe sensory processing. In our context, this term
does not imply a hierarchical structure but rather stresses the presence
of reciprocal connectivity between DMN nodes.

The critical role of the PCC in disorders of consciousness becomes
even more evident when considering the second finding which shows
differences between patient groups. VS/UWS patients exhibit reduced
strength of recurrent (inhibitory) connectivity and stronger oscillations
within the PCC as compared to the MCS patients and the control group.
These two characteristics of effective connectivity (i.e., strength of re-
current connectivity and oscillations) in the PCC are also significantly
associated with clinical (i.e., behavioral) measures of consciousness
after severe brain injury in both patient groups. As conscious behavior
increases, down-regulation of the PCC itself gets more effective, while
(perhaps as a consequence) the amplitude of neuronal fluctuations de-
creases. To avoid a circularity effect driven by the ANOVA group differ-
ence, it is important to also look at this relationship for each group
separately. As can be seen in Fig. 5, the overall association between be-
havioralmeasures of consciousness and the two characteristics of effec-
tive connectivity is reflected in the VS/UWS group. In the MCS group,
however, it can barely be described as a trend possibly due to the high
variability in this group. The lack of inhibitory (self-) regulation of the



Fig. 5. Significant correlation between behavioral responsiveness of patients andparameter
estimates of the posterior cingulate cortex. (A) Significant correlation between behavioral
responsiveness (CRS-R scores) and recurrent connectivity strength of the posterior cingu-
late cortex for patients in minimally conscious state (MCS) and patients in vegetative
state (VS/UWS). (B) Significant correlation between CRS-R scores and amplitude of neuro-
nal fluctuations of the posterior cingulate cortex. Correlations were performed using
Spearman's Rho. The black confidence ellipse indicates correlation strength for both groups
together. The red and blue confidence ellipses indicate correlation strength for each patient
group, respectively.
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PCCmay be a reason for the increased oscillations observed in the PCC in
unresponsive patients. However, since this connectivity analysis is
based on the BOLD response,we are not able to disentangle the relation-
ship between oscillation strength driving neuronal responses and the
inhibitory or excitatory influence of this region. All we may conclude
is that the BOLD response of one specific region is influencing the
BOLD response of another region in a positive or negative manner,
under the assumption, and this is important, that the specified model
is a closed system in the sense that all influences are actually modeled.

It should be noted that, to date, differences in functional connectivity
betweenMCS and VS/UWS, that is, betweenminimal consciousness and
unconsciousness, have been pinpointed reliably and exclusively to me-
dial parietal regions such as the PCC. Medial parietal regions belong to
the so-called ‘rich club’ representing regions which are more inter-
connected throughout the brain than other nodes. They are suggested
to play a critical role in overall brain communication by enabling highly
efficient information integration (van den Heuvel and Sporns, 2011).
The PCC is a major transit hub for exchange of information throughout
the whole brain (Deshpande et al., 2011; Hagmann et al., 2008; Honey
et al., 2009; Yan and He, 2011). Recent studies reveal a complex pattern
of interaction with different functional connectivity networks empha-
sizing a multifaceted role of the PCC in global brain communication
(Leech et al., 2012; Leech et al., 2011). One main theory proposes that
the PCC plays a critical role in conscious internally-directed thought
(Binder et al., 1999; Mason et al., 2007; Raichle and Snyder, 2007). A
more complex role of the PCC in cognition has been recently postulated
by Leech and Sharp (2014). The authors propose an integrated Arousal-
Balance-and-Breadth-of-Attention model which assumes that the PCC
is sensitive to the state of arousal but serves also as a complex control
mechanism of attention.

The differences between patient groups regarding the functionality
of the PCC cannot be simply due to differences in arousal since patients
with disorders of consciousness show a dissociation of arousal and
awareness (Laureys et al., 2004). Indeed, while they both have recov-
ered from coma to a similar degree of wakefulness, they do differ in
the level of conscious awareness. With this in mind, it is reasonable to
conclude that the observed alterations of the PCC are directly involved
in the level of impaired consciousness.

We also observed (non-significant) differences in the inter-
hemispheric connectivity between groups, as can be seen in Fig. 3.
While in healthy controls the inter-hemispheric connectivity is recipro-
cal, which replicates findings of previous studies using DCM for resting-
state fMRI (Bastos-Leite et al., 2014; Li et al., 2012; Razi et al., 2014),
there seems to be an imbalance of inter-hemispheric connectivity in
VS/UWS. However, this finding should be interpreted with caution
since the differences are not significant and interpretation of inter-
hemispheric asymmetry is confounded by unilateral lesions.

There are some inconsistencies with previous studies investigating
effective connectivity of the DMN regarding findings in healthy volun-
teers. A majority of these studies identified influences from the MFC to
the PCC and not vice versa. However, this may be due to differences in
the methodological approaches such as Granger causality (Jiao et al.,
2011; Uddin et al., 2009; Zhou et al., 2011) and deterministic DCM (Di
and Biswal, 2013) which are perhaps less appropriate for resting-state
fMRI (see discussion below). Moreover, two of the three studies
employing DCM for resting-state fMRI (stochastic and spectral DCM)
did not use subject-specific coordinates to specify the DMN nodes
(Bastos-Leite et al., 2014; Razi et al., 2014). However, in the face of struc-
tural and functional variability across subjects, it is very important to
identify nodes at an individual level to ensure appropriate selection of
coordinates. Bastos-Leite et al. (2014), for example, performed Group
ICA on data of an independent control group to obtain the coordinates
of the four DMN nodes. This may also be an explanation for the very
low connectivity strength between regions reported in their work. Like-
wise, Razi et al. (2014) specified the DMN nodes using a standard seed-
based functional connectivity analysis at group level. The authors them-
selves acknowledge that interpretation of these empirical results is
therefore limited. Remarkably, the only study applying both an effective
connectivity method optimized for resting-state fMRI and specification
of nodes at a single-subject level reveals a very similar pattern of inter-
action in respect to thenegative efferent connections of the PCC (Li et al.,
2012).

DCM in general has a number of advantages compared to someother
methods investigating effective connectivity (Friston, 2009, 2011;
Penny et al., 2004; Roebroeck et al., 2011). It provides amore precise es-
timation at the neuronal level of how the rate of change of the hemody-
namic response in one region influences the rate of change in another
(Friston, 2009) and is robust and sensitive enough to examine clinical
populations (Rowe et al., 2010). We applied spectral DCM in particular
because it has been shown to bemore accurate in identifying between-
group effects than stochastic DCM (Razi et al., 2014) and in estimating
effective connectivity (Li et al., 2011; Razi et al., 2014). Besides charac-
terizing differences in directed connectivity strength, spectral DCM
also allows to distinguish form and amplitude of neuronal fluctuations
whichmay provide additional insight into the abnormalities underlying
a particular disease (Friston et al., 2014).

We note that there is an imbalance of gender in our sample with a
higher ratio of men to women in the patient groups compared to the
control group. While this is often the case in research in disorders of
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consciousness, the potential interaction between gender and brain
function after severe brain injury remains unexplored, and might re-
quire a larger sample size to be studied in detail. In addition, adjustment
for gender has been investigated and found not to substantively alter
the results.

In patients with severe head injury, processing of fMRI images is a
critical issue. There is an ongoing debate on which method is the best
to apply (Andersen et al., 2010; Ashburner and Friston, 2005; Crinion
et al., 2007). All spatial normalization methods for group analyses
have some disadvantages depending on the patients' type of brain le-
sions. This is especially problematic for patients such as the present co-
hort, in which etiology and brain lesions are highly heterogeneous
including focal, wide-spread, and subtle lesions. For this reason, we ap-
plied affine-only normalization and carefully examined each processing
step by visual inspection to avoid spurious results. Note that we extract-
ed the eigenvariate of the time series using coordinates obtained by ICA
at the single-subject level. This procedure ensures that, despite prob-
lems with normalization, the chosen nodes are functionally connected
within each individual DMN network.

4.1. Conclusion

Taken together, this investigation shows that impaired conscious-
ness is directly reflected in the imbalance between the inhibitory self-
regulation of medial parietal regions and the strength of oscillations
driving the neuronal responses. The PCC appears to have lost its control
mechanisms bymeans of (self-) inhibitory regulation and, therewith, its
function within the DMN as the main driven hub emphasizing themul-
tifaceted and significant role ofmedial parietal regions in consciousness.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.01.037.
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