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Abstract The classical theory of preference among monetary bets represents
people as expected utility maximizers with concave utility functions. Critics
of this account often rely on assumptions about preferences over wide ranges
of total wealth. We derive a prediction of the theory that bears on bets at any
fixed level of wealth, and test the prediction behaviorally. Our results are
discrepant with the classical account. Competing theories are also examined
in light of our data.

Keywords Gambling Æ Risk aversion Æ Concave utility function Æ Expected
utility Æ Prospect theory

1 Introduction

An influential theory of preferences among bets represent people as expected
utility maximizers with nondecreasing concave utility functions. In what
follows, we shall call anyone who behaves this way a classical agent. The
theory that people behave towards bets as if they were classical agents has
been the subject of intense discussion, with alternative hypotheses prompted
by experimental findings at variance with the classical account.1 A new kind
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of objection has recently been formulated by Rabin (2000a, b; see also Rabin
and Thaler 2001). Let ( g, p, l ) denote the bet yielding gain $ g with prob-
ability p and loss $ l with probability 1 � p. Rabin deduces predictions of the
form:

A classical agent who declines bet ( g, p, l ) at wealth levels within interval
I will decline bet (g¢, p¢, l¢) at wealth level J.

For example, he shows that:

(a) A classical agent who declines (110, 0.5, 100) at all wealth levels will
decline (X, 0.5, 1000) for every X and every wealth level.

(b) A classical agent who declines (105, 0.5, 100) through wealth level
$350,000 will decline (635670, 0.5, 4000) at wealth level $340,000.
These predictions are all the more remarkable for being ‘‘parameter
free’’. No assumptions about the utility curve are made except for its
concavity throughout the domain of money. Rabin believes that the
predictions do not conform to typical human preferences hence most
people are not classical agents. Indeed, Rabin and Thaler (2001) con-
clude that the classical theory corresponds to the dead parrot in the
famous sketch from Monty Python’s Flying Circus, and they ‘‘aspire to
have written one of the last articles debating the descriptive validity of
the expected utility hypothesis’’ (p. 229).

Not everyone, however, acknowledges the infidelity of (a), (b) to human
preferences. Watt (2002) and Palacios–Huerta et al. (in an unpublished
manuscript, 2004), for example, observe that the antecedent of (a) is difficult
to verify empirically since it involves imagining choices under counterfactual
circumstances of immense wealth. Prediction (b) is more trenchant in this
regard, but it is not clear (pace the intuition of Rabin and Thaler) what most
people would do at the cited wealth levels. In particular, for someone as risk
averse as indicated in the premise of (b), a $4,000 loss might be a fearsome
prospect when her fortune is limited to $340,000.2

The present note attempts to preserve the spirit of Rabin’s criticism while
avoiding assumptions about behaviors across a wide range of wealth. We
deduce a prediction about the choices of classical agents at a given level of
wealth, and then present experimental evidence contrary to the prediction.
Defects in the classical theory have been revealed in many experiments (e.g.,
the probability of choosing a given option can be increased by adding a new
one; see Huber et al. 1982; Simonson and Tversky 1992; Tentori et al. 2001).
The present demonstration is distinctive in its simplicity, and in its focus on
the supposed concavity of the utility function.

2 A simple constraint on the choices of classical agents

As noted above, we use ( g, p, l ) to denote the bet yielding $g with proba-
bility p and loss $l with probability (1 � p). Let A be a classical agent with

2 LeRoy (2003) offers reason to doubt that most people reject small, unfavorable gam-
bles like (105, 0.5, 100). But see Rabin and Thaler’s (2002) response to critics, and the data
they cite about risk aversion in gambles with small stakes.
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current wealth w and (strictly increasing, concave) utility function U.
Suppose that A is indifferent between accepting or rejecting the bet (g, 1/2,
l), where g ‡ l > 0. Then 1

2

� �
U(w+g)+ 1

2

� �
U(w � l)=U(w) so:

Uðwþ gÞ � UðwÞ ¼ UðwÞ � Uðw� lÞ ð1Þ

Directly from the concavity of U:

UðwÞ � Uðw� gÞ
g

�UðwÞ � Uðw� lÞ
l

Uðwþ gÞ � UðwÞ
g

�Uðwþ lÞ � UðwÞ
l

The latter two inequalities can be rewritten as:

UðwÞ � Uðw� gÞ � g
l

UðwÞ � Uðw� lÞ½ � ð2aÞ

Uðwþ lÞ � UðwÞ � l
g

Uðwþ gÞ � UðwÞ½ � ð2bÞ

Substituting (1) into (2a), (2b) gives:

UðwÞ � Uðw� gÞ � g
l

Uðwþ gÞ � UðwÞ½ � ð3aÞ

Uðwþ lÞ � UðwÞ � l
g

UðwÞ � Uðw� lÞ½ � ð3bÞ

Algebraic manipulation of (3)a, (3)b yields:

g
lþ g

Uðwþ gÞ þ l
lþ g

Uðw� gÞ � UðwÞ ð4aÞ

g
lþ g

Uðwþ lÞ þ l
lþ g

Uðw� lÞ � UðwÞ ð4bÞ

Thus, A will decline (g, p, g) for any p < g /(l + g), and will accept (l, p, l)
for any p > g/(l + g). Summarizing:

(5) Any classical agent who is indifferent between accepting or rejecting
(g,1/2, l) will decline (g, p, g) for any p < g/(l + g) and accept (l, p, l) for any
p > g/(l + g).

Note that (5) does not depend on A’s level of wealth. Nor does (5)
depend on the particular shape ofA’s utility function, beyond concavity and
monotonicity. It is also worth observing that for p near g/(l + g) (with
g > l), both (g, p, g) and (l, p, l) have positive expected monetary value
(EMV), with the first bet more favorable than the second. So the bounds in
(5) express the fact that a classical agent may accept a bet whose EMV is less
than a rejected bet in order to avoid exposure to risk.
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3 Experiment

If people respond to bets like classical agents then (5) yields clear predictions
about their preferences. To test the predictions, we asked college students to
create bets to which they were indifferent, and to evaluate other bets. These
tasks were carried out in four successive stages.

Stage 1. The students were first asked to adjust the value of the gains X, Y,
Z in bets (X, 0.5, 10), (Y, 0.5, 200), and (Z, 0.5, 1100) to the smallest amounts
that render each bet barely acceptable. The bets were presented in the order
just indicated. Although it was made clear that all bets in the study were
hypothetical, the students were urged to imagine them as genuine options
available immediately. It was emphasized that each bet was to be considered
individually (not conditional on having accepted other bets presented ear-
lier). The numbers issuing from this part of the procedure are denoted by G10,
G200, G1100. We interpret each subject to be close to indifferent about (G10,
0.5, 10), (G200, 0.5, 200), and (G1100, 0.5, 1100). From (5) we therefore obtain:
If a given subject is a classical agent then s/he will accept (10, p, 10) if

p >
G10

10þ G10
ð6Þ

and similarly for (200, p, 200) and (1100, p, 1100).
Stage 2. Next, each participant adjusted the losses X, Y, Z in bets (10, 0.5,

X), (200, 0.5, Y), and (1100, 0.5, Z) to the largest amounts that render each
bet barely acceptable (bets presented in the order indicated). The numbers
issuing from this part of the procedure are denoted by L10, L200, L1100. We
interpret each subject to be close to indifferent about (10, 0.5, L10), (200, 0.5,
L200), and (1100, 0.5, L1100). From (5) we therefore obtain:
If a given subject is a classical agent then s/he will decline (10, p, 10) if

p <
10

L10 þ 10
ð7Þ

and similarly for (200, p, 200) and (1100, p, 1100).
Stage 3. Participants were then asked whether they would accept each bet

in a series of twelve. The twelve bets were presented in random order, and a
yes/no decision was made to each in turn. Six of the bets were ‘‘fillers’’,
designed to mask the focus of the experiment. The other six had the fol-
lowing forms.

ð10; p; 10Þ where p ¼ 0:95� ð10=ðL10 þ 10ÞÞ ð8aÞ

ð200; p; 200Þ where p ¼ 0:95� ð200=ðL200 þ 200ÞÞ ð8bÞ

ð1100; p; 1100Þ where p ¼ 0:95� ð1100=ðL1100 þ 1100ÞÞ ð8cÞ

ð10; p; 10Þ where p ¼ 1:05� ðG10=ðG10 þ 10ÞÞ ð8dÞ

88 M. M. Monti et al.



ð200; p; 200Þ where p ¼ 1:05� ðG200=ðG200 þ 200ÞÞ ð8eÞ

ð1100; p; 1100Þ where p ¼ 1:05� ðG1100=ðG1100 þ 1100ÞÞ ð8fÞ

Thus, if our participants were classical agents, (6) and (7) predict that
they decline bets (8a,b,c) and accept bets (8d,e,f). Note our use of proba-
bilities that fall decisively on the active side of each boundary (either 95%
of the highest unacceptable probability or 105% of the least acceptable
one).

Stage 4. Finally, for each of three bets of form (x, p, x), participants were
asked to specify the minimum probability p that renders (x, p, x) barely
acceptable. The three bets were (10, p, 10), (200, p, 200), (1100, p, 1100),
evaluated in that order. According to (6) and (7), the value of p chosen for
the three bets should lie in the following intervals.

p - interval forð10; p; 10Þ ¼ 10

L10 þ 10
;

G10

10þ G10

� �

p - interval forð200; p; 200Þ ¼ 200

L200 þ 200
;

G200

200þ G200

� �

p - interval forð1100; p; 1100Þ ¼ 1100

L1100 þ 1100
;

G1100

1100þ G1100

� �

ð9Þ

3.1 Methods

As subjects, we recruited 23 undergraduates at Rice University, and 28
undergraduates at Princeton University (52% females). All fulfilled course
requirements through their participation. The students first received
instruction from an experimenter, then worked individually at computer
consoles where instructions were repeated in text format. The experiment
required about 20 minutes to complete. There were no appreciable differ-
ences between Rice and Princeton students, so all participants are grouped in
the analyses that follow. Note that the predictions issuing from (5) of the
Classical Theory may be tested entirely on a within subject basis.

3.2 Results

Table 1 shows the median dollar amounts chosen in Stages 1 and 2. Al-
though the medians seem reasonable, analysis at the within-subject level
reveals conflict with the Classical Theory. We illustrate with one student who
set G10 = 11 and L10 = 6 in Stages 1 and 2 of the experiment. If he is a
classical agent, (6) and (7) imply that he will accept (10, p, 10) if p > 11

21 and
reject the same bet if p < 10

16. Hence, indifference to (10, p, 10) requires
p 2 ½1016 ; 1121�, which is impossible. Call such a subject (for whom

10
ðL10þ10Þ > G10=ð10þ G10Þ
� �

incoherent at level 10, and similarly for levels 200
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and 1100. The middle column of Table 2 shows that incoherence was fre-
quent at each level. Indeed, 46 of the 51 students were incoherent at some
level.

The degree of (in)coherence at a given level is measured by the difference
between the upper and lower bounds exhibited in (9). Negative values are
inconsistent with the classical theory. Table 2 shows incoherence at all three
levels according to this measure. At level 1100, the average distance from the
upper bound in (9) is –0.023, significantly less than 0.0 (t = –2.37). Thus, at
level 1100, the computed upper bound is reliably below the computed lower
bound.

Another sense in which the students did not behave like classical agents
emerges from their attitudes to the bets in (8). According to (6) and (7), the
students should decline bets (8a,b,c) and accept bets (8d,e,f). The number of
times these predictions were violated is recorded in Table 3. Each of the
predictions (8a,b) was violated by a majority of the students. In the first of
these cases, the majority is significantly greater than expected from uniform
random choice (prob < 0.001 by a binomial test with parameter 0.5). Of the
51 students, 44 violated at least one of the predictions (8a,b,c), and 30 vio-
lated at least one of (8d,e,f).

The probabilities specified in Stage 4 of the experiment (henceforth called
‘‘p-values’’) are shown in the first two columns of Table 4. The increase in
probability across the three levels is reliable by correlated t-test
(prob < 0.001), and appears to reflect aversion to risk. The table also shows
that many of the p-values fell outside of the intervals displayed in (9). Indeed,
at each level, a reliable majority of the subjects failed to honor at least one
boundary of the interval. (It is possible to honor neither boundary in case of
incoherent bounds.)

To quantify the discrepancy between chosen p-values and their predicted
intervals in (9), let p10 be the probability that a given subject chose in Stage
4 at level 10, and similarly for p200 and p1100. Define the undershoot for level
10 to be:

Table 1 Median gains and losses chosen in Stage 1 and 2 (N = 51)

Question format Median chosen
gain X

Question format Median chosen
loss X

(X, 0.5, 10) 20 (10, 0.5, X) 5
(X, 0.5, 200) 500 (200, 0.5, X) 75
(X, 0.5, 1100) 3500 (1100, 0.5, X) 255

Table 2 Number of incoherent at each level, and mean width of coherent interval
(N = 51)

Level Number incoherent Mean (S.D.)

10 22 �005 (0.084)
200 31 �031 (0.017)
1100 35 �023* (0.010)
at least one level 46

*At level 1100, the average distance from the lower to the upper bound in (9) is –023,
significantly less than 0.0 (t = –2.37).

90 M. M. Monti et al.



0 if p10 �
10

L10 þ 10
; and otherwise

10

L10 þ 10
� p10:

Thus, the undershoot for level 10 is the distance (if any) from p10 upward to
the lower bound specified in (9). Define the overshoot for level 10 to be:

0 if p10 �
G10

10þ G10
; and otherwise p10 �

G10

10þ G10
:

The overshoot for level 10 is thus the distance (if any) from p10 downwards
to the upper bound specified in (9). Let the undershoot and overshoot for
levels 200 and 1100 be defined similarly. Table 5 shows the undershoots and
overshoots at each level. Thus, the average distance from p10 upward to the
lower bound for (10, p, 10) shown in (9) is 0.076 (S.D. = 0.099). (If p10 for a
given subject is above the bound then his/her contribution to the mean is
zero.) The average distance from p10 downwards to the upper bound for
(10, p, 10) shown in (9) is 0.027 (S.D. = 0.050). (If p10 for a given subject is
below the bound then his/her contribution to the mean is zero.) The other
numbers in Table 5 are interpreted similarly. The table shows that the
undershoots were greater for level 10 compared to 200, and greater for 200
compared to 1100; likewise, the overshoots were greater for level 1100
compared to 200, and for 200 compared to 10. All the means differ reliably
from each other (prob < 0.02) by correlated t-test except for the undershoots
at levels 200 and 1100 (t = 1.78), and the undershoot versus overshoot at
level 200 (t = 1.69). It is thus clear that the participants deviated from
classical agents in a systematic rather than random way.

Table 3 Number of Stage 3 choices inconsistent with the classical theory (N = 51).
Inconsistency with (8a,b,c) requires accepting a gamble predicted to be rejected. Incon-
sistency with (8d,e,f) is the reverse. The starred result occurred significantly more often
than predicted by a coin–flip model (prob < 0.001 by binomial test)

Prediction Levels

10 200 1100

(8a,b,c) 37* 31 20
(8d,e,f ) 6 13 19

*Inconsistency with (8a,b,c) requires accepting a gamble predicted to be rejected. Incon-
sistency with [8]d,e,f is the reverse. The starred result occurred significantly more than
predicted by a coin-flip model (prob < 0.001 by binomial test).

Table 4 Probabilities offered in Stage 4 (N = 51)

Bet Mean p-value
(and S.D.)

Number below
lower bound

Number above
upper bound

Number outside
interval

(10, p, 10) 0.585 (0.146) 31 18 44*
(200, p, 200) 0.738 (0.120) 23 31 47*
(1100, p, 1100) 0.843 (0.107) 15 40* 50*

*Starred results occurred significantly more often than predicted by a coin–flip model
(prob < 0.001 by binomial test).
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Call a subject classical at level 10 if her p-value for that level lies in the

(coherent) p-interval 10
ðL10þ10Þ >

G10

ð10þG10Þ

� �
], and similarly for levels 200 and

1100. Only 7 subjects were classical at level 10, 4 at level 200, and 1 at level
1100. Not a single subject behaved like a classical agent at all three levels.

4 Alternatives to the classical theory

Consider again an agent A whose preferences among bets are governed by
nondecreasing utility curve U. Suppose that A is indifferent between
accepting and rejecting the bet (g, 0.5, l) where g ‡ l > 0. Then
ð12ÞU(w+g)þð12ÞU(w � l)=U(w), and once again we obtain equality (1), re-
ported here:

Uðwþ gÞ � UðwÞ ¼ UðwÞ � Uðw� lÞ

If U is concave (respectively, convex) in the domain of gains then:

Uðwþ gÞ � UðwÞ
g

� ðrespectively;�ÞUðwþ lÞ � UðwÞ
l

These inequalities concern the ‘‘domain of gains’’ because only increases to
w are at issue. Similarly, if U is concave (respectively, convex) in the domain
of losses then:

UðwÞ � Uðw� gÞ
g

� ðrespectively;�Þ UðwÞ � Uðw� lÞ
l

Substituting (1) into the latter inequalities produces:

Uðwþ lÞ � UðwÞ � ðrespectively;�Þ l
g

UðwÞ � Uðw� lÞ½ �

UðwÞ � Uðw� gÞ � ðrespectively;�Þ g
l

Uðwþ gÞ � UðwÞ½ �

Algebraic manipulation then yields the following.

(10) (a) If U is concave (respectively, convex) in the domain of gains then:

g
lþ g

Uðwþ lÞ þ l
lþ g

Uðw� lÞ � ðrespectively;�ÞUðwÞ

Table 5 Undershoot and overshoot in Stage 4 (N = 51)

Bet Mean undershoot (and S.D.) Mean overshoot (and S.D.)

(10, p, 10) 0.076 (0.099) 0.027 (0.050)
(200, p, 200) 0.032 (0.049) 0.061 (0.099)
(1100, p, 1100) 0.011 (0.029) 0.093 (0.088)
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(b) If U is concave (respectively, convex) in the domain of losses then:

g
lþ g

Uðwþ gÞ þ l
lþ g

Uðw� gÞ � ðrespectively;�ÞUðwÞ

If U is concave in both the domain of gains and the domain of losses then
we recover our classical agent, described by (5). If U is concave in the domain
of gains and convex in the domain of losses then A resembles the kind of
agent depicted in Prospect Theory (see Kahneman and Tversky 1979). In this
case, (10) implies thatA will accept both (g, p, g) and (l, p, l) if p> g/(l+g).
Hence, the probability that A assigns in Stage 4 of the experiment must lie
below X /(LX+X) and GX/(X+GX) for each level X 2 {10, 200, 1100}. In
contrast, if U is convex in the domain of gains and concave in the domain of
losses, then A is more like the agent discussed by Friedman and Savage
(1948). In this case, (10) implies that A will decline both (g, p, g) and (l, p, l)
if p < g/(l+g). Hence, the probability that A assigns in Stage 4 of the
experiment must lie above X/(LX+X) and GX/(X+GX) for each level
X 2 {10, 200, 1100}. Let us introduce the following terminology.

(11) DEFINITION: Let X 2 {10,200,1100} be given. Let GX and LX be the
values assigned in Stages 1 and 2 of the experiment, and let pX be the
probability assigned in Stage 4.

(a) A subject is KT at level X if and only if pX is bounded above by both
X/(LX+X) and GX/(X+GX). (‘‘KT’’ abbreviates ‘‘Kahneman and
Tversky’’.)

(b) A subject is FS at level X if and only if pX is bounded below by both
X/(LX+X) and GX/(X+GX). (‘‘FS’’ abbreviates ‘‘Friedman and
Savage’’.)

The definition provides apt characterizations of Kahneman and Tversky
(1979) and Friedman and Savage (1948) only if

GX � X � LX and pX � :5 ð12Þ

in as much as these inequalities were assumed for the developments above. In
what follows, at each level X we therefore exclude subjects who violated (12).

Consider a subject S who satisfies (12). The weak inequalities appearing
in Definition (11) allow S to be more than one of KT, FS, and classical. It is
also possible for S to be none of the three types. For example, one subject
(mentioned at the beginning of the Results section) chose G10=11, L10=6,
p10=0.55; calculation of 10/(L10+10) and G10/(10+G10) reveals that 0.55 is
neither above both these bounds (thus ruling out FS), nor below both (ruling
out KT), nor ‘‘in between’’ (since the bounds are inverted, which rules out
classical).

Table 6 shows the number of subjects of each kind (KT, FS, classical) at
the three levels. It also exhibits the number of subjects (out of 51) con-
forming to (12). At each level, a large majority is either KT or FS; few are
classical. The difference in proportions of KT and classical subjects is reliable
at each level (prob < 0.01); the same is true of the differences between FS
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and classical subjects. There were reliably more KT than FS subjects at level
10 (prob < 0.02), and the reverse at level 1100 (prob < 0.01); there is no
reliable difference at level 200.

A different alternative to the classical theory posits ‘‘first-order’’ aversion
to risk, that is, the disinclination to accept fair gambles even with tiny stakes;
in contrast, classical agents are indifferent to them (see Segal and Spivak
1990). Gul, in an influential article (1991) offers a generalization of utility
theory that is consistent with first-order aversion. It implies that an agent
with wealth w and utility function U will accept (g, p, l) if and only if

UðwÞ < Uwðg; p; lÞ ¼
p

p þ ð1� pÞk Uðwþ gÞ þ ð1� pÞk
p þ ð1� pÞk Uðw� lÞ; ð13Þ

where k is a parameter characterizing the agent’s aversion to disappointment;
the standard theory is recovered at k = 1. It follows easily that for any level
w of wealth, the marginal change in Uw (e, .5, e) goes to 1�k

1þk U¢(w) as e fi 0,
signifying first-order aversion to loss when k > 1.

If Gul’s model is descriptively accurate with concave U, it might be taken
as partial vindication of the classical theory. To investigate this possibility,
call an agent Gul if her preferences for gambles are governed by inequality
(13), where U is concave and k > 0. By an argument similar to the one
advanced earlier, we can show:

Any Gul agent who is indifferent between accepting or rejecting (g, 1/2, l)
will decline (g, p, g) for any p < g/(l+g) and accept (l, p, l) for any
p > g/(l+g).

Since this is the same prediction as (5) for classical agents, our experi-
mental results conflict with (13) as much as they conflict with the classical
theory. It therefore appears that adding first-order risk–aversion to the
concavity assumption may not be sufficient to describe real choices among
lotteries.

5 Discussion

The experimental results are discrepant with the hypothesis that college
students behave like classical agents when evaluating bets. Instead of
behaving classically, Table 6 suggests that at low stakes, most subjects
choose as if their utility for money were concave for gains and convex for
losses – as suggested by Kahneman and Tversky (1979); the reverse patterns

Table 6 Number of Stage 4 probabilities within intervals predicted by different theories.
At each level X, N is the number of subjects (out of 51) who satisfied the inequalities (12)

Theory Level:

10 (N = 46) 200 (N = 48) 1100 (N = 50)

KT 27 17 10
FS 16 24 34
Classical 6 3 1
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holds for high stakes – conforming to Friedman and Savage (1948).3 No
doubt our data arise partly from noisy decision processes. But the results
also suggest that the noise overlays systematic biases that are incompatible
with the classical theory of choice.

Two caveats must be entered. First, the bets in our study were hypo-
thetical so it remains possible that the students would respond like classical
agents if faced with the real thing.4 Second, people might resemble classical
agents better when they are led to conceptualize bets in terms of overall
wealth, e.g., in terms of U(w – $10) rather than a decontextualized $10 loss.
It is well known that attitudes towards gains versus losses are asymmetric in
ways that apply less to overall wealth.5

The results nonetheless suggest that the classical theory of risk aversion is
qualitatively inaccurate. For, choices deviate in systematic fashion from
predictions that are independent of parametric assumptions about the utility
curve, beyond concavity itself.
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