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WHY IS YOUR ANALYSIS PARAMETRIC?

Optimal power (defined as the probability to
detect a real difference) — when assumptions are
met. Particularly important in neuroimaging:

Low SNR

Low df (data acquisition is expensive and time
Intensive)

Standard massive-univariate approach requires
correction for multiple comparison, reducing
sensitivity further



WHY IS YOUR ANALYSIS PARAMETRIC?

Optimal power (defined as the probability to
detect a real difference) — when assumptions are
met. Particularly important in neuroimaging:

Computationally simple — very important
considering it 1s computed over more than 100,000
voxels

Flexible framework — allows looking at multiple
factors simultaneously and/or factoring out
influence of variables of non-interest (think of the

GLM approach)

Graceful failure (for 1 sample t-tests) — when
assumptions are not met 1t becomes more
conservative



WHY YOUR ANALYSIS SHOULD NOT BE
PARAMETRIC ...

Violations

In parametric
analyses we are
making many

Identically distributed:

— Qutliers can influence data in unexpected ways, even for large

) samples.
assumptions
concerning the * Independence:
. . . — p-values too liberal; false positives: nominal degrees of freedom
dlStrlbUtlon Of the |l-35 overestimate. P g

data which are not

always met. * Normality: . o
— p-values are wrong, no simple rule for determining in what way.

« Equal variance:

— p-values too liberal; false positives; nominal degrees of freedom
IS overestimate.
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PART I:
IS YOUR ROI ANALYSIS TOO PARAMETRIC?

Violations

dentically distributed:

— Outliers can influence data in unexpected ways, even for large
samples.

* Independence:

— p-values too liberal; false positives; nominal degrees of freedom
is overestimate.

* Normality:
— p-values are wrong, no simple rule for determining in what way.

» Equal variance:

— p-values too liberal; false positives; nominal degrees of freedom
Is overestimate.
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PART I:
IS YOUR ROI ANALYSIS TOO PARAMETRIC?
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Improving standards in brain-behavior correlation analyses
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Edited by: Associations between two variables, for instance between brain and behavioral
Russell A. Foldrack, University of measurements, are often studied using correlations, and in particular Pearson correlation.

Tém_ﬁ' YA However, Pearson correlation is not robust: outliers can introduce false correlations or

EZTT’EWE&;H. University of mask existing ones. These problems are exacerbated in brain imaging by a widespread

California, Los Angeles, USA lack of control for multiple comparisons, and several issues with data interpretations. \We

Tal Yarkonj University of Colorado illustrate these important problems associated with brain-behavior correlations, drawing

at Boulder, USA examples from published articles. We make several propositions to alleviate these
problems.

Keywords: Pearson correlation, Spearman correlation, skipped correlation, outliers, robust statistics, multiple
comparisons, multivariate statistics, confidence intervals




BRAIN-BEHAVIOR CORRELATIONS

Pearson correlation:
Most widely used

Non-robust estimator, particularly sensitive to outliers (and
magnitude of the slope around which points are clustered, magnitude
of the residuals, heteroscedasticity).

Outliers can affect correlations both ways:

False positive problem: create the impression of an association greater
than zero where there 1s, 1n fact, none

Power problem: mask the presence of a significant effect
Alternatives:

Spearman — calculates the Pearson correlation on the rank
of the data; less sensitive to marginal (univariate) outliers

(Wilcox) Skipped correlations — calculates the Spearman
correlation after having performed multivariate robust
outlier detection (and removal)
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PART II:

IS YOUR GROUP ANALYSIS TOO PARAMETRIC?

Violations

dentically distributed:

— QOutliers can influence data in unexpected ways, even for large
samples.

* Independence:

— p-values too liberal; false positives; nominal degrees of freedom
IS overestimate.

Normality:

— p-values are wrong, no simple rule for determining in what way

qual variance:

— p-values too liberal; false positives; nominal degrees of freedory
IS overestimate.
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MOVING PARTS (DECISION POINTS)
Group level model (e.g., FFX, RFX, MFX)

Outlier management

Thresholding method & correction for multiple
comparisons (e.g., cluster threshold, voxel, parametric,
non-parametric)



SEVERAL POSSIBLE SOURCES OF
HETEROSCHEDASTIC VARIANCE

In fMRI, there 1s sizeable inter-subject variance
because of several factors:

Spatial mismatch between subjects’ cortical structures
(can be as large as 1cm!), which can yield a structured but
variable pattern of noise

Activation magnitude differences (both across
subjects and from session to session): physiological
fluctuations, motion, baseline, instruction
misunderstanding, ...

Differences in elicitation of brain networks across
subjects, due to genetic/epigenetic differences or
different cognitive strategies

All these factors end up being modeled as the variance

term 1n group analysis (1.e., t-test denominator).
Thirion et al., 2007



THE PROBLEM I8S:

7.=3/1

Thirion et al., 2007



THE PROBLEM I8S:

“We observed that [...] the analysis of 6 different groups
of 13 subjects would lead to different reports of the set of
activated regions for the same experimental condition
and standard threshold.”

Thirion et al., 2007



AREAS OF HIGH VARIANCE COINCIDE WITH
AREAS WITH SIGNIFICANT EFFECT SIZE

Group-level activation map (p<0.001) Group-level variance

The group effect (8(v)) is not independent of the
variance (v,(v)), penalizing the statistic/sensitivity



LARGE AREAS OF NON-NORMALITY OF f3

Group-level activation map (p<0.001) D’Agostino-Pearson normality test

Up to 30% of brain voxels fail the D’a-P test of
normality for the effect



SMALLER AREAS OF NON-NORMALITY OF T = £

AN

Q

Group-level activation map (p<0.001) D’Agostino-Pearson normality test

Up to 10% of brain voxels fail the D’a-P test of

normality for the normalized effect T =

SV e



SMALLER AREAS OF NON-NORMALITY OF T = E

o)

Group-level activation map (p<0.001) D’Agostino-Pearson normality test

Non-normality does not appear to co-localize with
areas of activation



(a) Reliabil/Reprod index (across the maps of groups) (b) Sensitivity
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TESTING OUR TOOLS

CAN PARAMETRIC STATISTICAL METHODS BE TRUSTED
FOR FMRI BASED GROUP STUDIES?

Anders Eklund “*¢, Thomas Nichols ¢, Hans Knutsson ¢

“Division of Medical Informatics, Department of Biomedical Engineering,

Linkoping University, Linkoping, Sweden

PDivision of Statistics and Machine Learning, Department of Computer and Information Science,

Linkoping University, Linkdping, Sweden

“Center for Medical Image Science and Visualization (CMIV),

Linkoping University, Linkdping, Sweden

IDepartment of Statistics, University of Warwick, Coventry, United Kingdom

ABSTRACT

The most widely used task fMRI analyses use paramet-
ric methods that depend on a variety of assumptions. While
individual aspects of these fMRI models have been evalu-
ated, they have not been evaluated in a comprehensive man-
ner with empirical data. In this work, a total of 2 million
random task fMRI eroup analyses have been performed using

title or abstract). The first fMRI experiments consisted of
simple motor tasks, while more recent examples involve rest-
ing state fMRI to study (dynamic) brain connectivity [3. 4].
Despite the popularity of fTMRI as a tool for studying brain
function, the statistical methods used have rarely been vali-
dated using real data, likely due to the high cost of fMRI data
collection. Validations have instead mainly been performed
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—_ Analysis performed with:
g ccel 1. RFX: SPM, FSL(OLS), AFNI(3dttest++)
S 2. MFX: FSL(FLAME1), AFNI(3dMEMA)
2 IDepartme 3. NN-PARAM (perm): BROCCOLI [like FSL-randomize
but much much faster!]
Vo)
Parameter Values used

fMRI data
Activity paradigm
Smoothing
Analysis type
Number of subjects
Inference level
Cluster defining threshold

Beijing (198 subjects), Cambridge (198 subjects)
Block (B1, B2), event (E1, E2)
4,6, 8. 10 mm FWHM
One sample t-test (group activation), two sample t-test (group difference)
20, 40
Voxel, cluster
p=0.01(z=23),p=0.001 (z=3.1)




Familywise error rate (%)

2-SAMPLE T-TEST + CLUSTER FEW CORR

Egamhridge data, two sample t-test, 20 subjects, CDT p = 0.0

N Parametric

IdMEMA Perm

Non-

)\ Para )
th

5l::‘.ﬂaml:lril:ige data, two sample t-test, 20 subjects, CDT p = 0.001
=4 mm
G mm
L — 8 mm
50 =10 mm
—_ —Expected
& —-—-95% CI
% 40 - ]
g
@30} 1
b
E20} .
o]
w
N2

SPM

20

FLAMEL

F5L OLS

0 I 1 1 1 i} i L 1 1 1 1 1 1 1 1 1 1 1 1 1
B1BZELE2B1B2E1E2B1B2ELE2B1B2ELEZB1IB2ELIE2B1IBZELEZ
Jdttest++

3dMEMA  Perm




Familywise errar rate (%)

2-SAMPLE T-TEST + CLUSTER FEW CORR

5gaml:lrii:lge data, two sample t-test, 40 subjects, CDT p = 0.01 5%aml:lridge data, two sample t-test, 40 subjects, CDT p = 0.001
—d mm —d mm
=G mm =G mm
L — R, TV i L — R, TV i
50 =10 mm 50 =10 mm
— Expected — Expected
—-—-95% CI —-—-95% CI

L
(=]
T

1

Familywise errar rate (%)
MJ (¥N]
=1 o

. 10% S~
'''''''''''''''' T _'_'_'_'_'A__'T__'_'3?"'“."]“"'. ]

0 Il 1 1 1 1 L 1 1 1 1 L 1 1 1 1 1 1 1 1 1 Il 0 Il 1 1 1 1 1 1 L 1 1 1 1
BIB2E1EZB1B2E1E2B1B2ELE2BIB2ELIE2BIB2EIEZBIB2ELEZ BIB2E1EZB1B2E1E2B1B2ELE2BIB2ELIE2BIB2EIEZBIB2ELEZ
SPM FLAMEL FSL OLS Jdttest++ JdMEMA Perm SPM FLAMEL FSL OLS Jdttest++ JdMEMA Perm

N=40




Familywise errar rate (%)

1-SAMPLE T-TEST + CLUSTER FEW CORR

Bgambridge data, one sample t-test, 20 subjects, CDT p = 0.0 5l(%'almI:wi»:iguz data, one sample t-test, 20 subjects, CDT p = 0.001
=4 mm —d4 mm
6 mm ——6 mm
L —g mm b L — R mm
50 s 10 MM 50 e 10 MM
—Expected —_ — iy pected
—-—- 95% CI £ —-—-95% Cl
40 |- 1 ¥ 40 1
=
S
30+ 1 T30} 1
b
20 @ | E20f -
]
[T
10 7 101 . 7 N
D L L L L L L L L L L L L L - L L 4 L L L L L ' 0 i 1 1 | A | | I | | 1 1 | | 1 i ! | 1 I I
B1BZE1E2B1B2E1EZE1B2E1EZB1BR2E1IE2B1RB2E1E2B1B2ZELE2 B1B2E1EZB1B2E1E2B1B2ELIEZBI1B2EL1EZB1B2E1E2RB1B2ELE

SPM  FLAME1  FSLOLS  3dttest++  3dMEMA  Perm SPM  FLAME1  FSLOLS  3dttest++  3dMEMA  Perm




1&2-SAMPLE T-TEST + VOXEL FEW CORR

S

5

Familywise error rate (%)
3 8

-
=

Camb!
60 U

ridge data, two sa

mple t-test, 20 subjects, voxel inference

— M
L ALL1]
— B M

10 mm
=——Expected
—-=-.85% CI

0
B1BZE1E2B1B

SPM

EZB1B2E1E2B1B2E1E2B1B2E1EZB1B2E

3dMEMA

1E2
Perm

Cambridge da
60 dg

3

5

Familywise error rate (%)
S 8

—
]

ne sample t-test, 20 subjects, voxel inference

— I
s 6 NI
— B M

10 mm
=——Expected
—-=-.85% CI

—_— e F— ___;é
02.. ‘\_—| | | I I |'.-r i i 1
B1B2E1E2B1B2E1E2B1B2E1E2B1B2E1E2BE1B2E1E2B1B2E1E2

SdMEMA

Perrn




1&2-SAMPLE T-TEST + VOXEL FEW CORR

3

5

Familywise error rate (%)
S 8

—
=

50 Cambridge data, two sample t-test, 4

bjects, voxel inference

r— £ TN
s 6 M
T
10 mm E
— Expected
—-=--95% CI

0 —
B1B2ZE1E2B1B2E1

SPM

FLAME1 FSLOLS

E2B1BZE1EZB1B2E1E
3dttest++

B1B2ZE1EZ2B1B2E1E
3dMEMA  Perm

N=40

Cambridge data,
6’0 @ T

Familywise error rate (%)
8

D f
Bi1B2ZE1E2B1B2E1E2B1B2ZE1EZB1B2E1E2B1B2E1EZB1B2E1E2
Perm

one sample t-test, 40 subjects, voxel inference
4 mm
- LU
8 mm
10 mm 4
m— Expected
—-—-.85% CI

SPM FLAME1 FSLOLS  3dttest++  3dMEMA




2-SAMPLE T-TEST + ADHOC: P<0.001 & 10VOX

4 &}eijing data, two sample t-test, 20 subjects, ad-hoc cluster inference
1 L ] L] I L I ] L] ] L ] L] I L} I LJ L L m

90+
80+
< 70
@
T B60F
o
5 sol ]
@
R0
E —E mm
e 8 [TIT1
> 30 w10 MM
20+
D 1 i 1 '] ] 1 [l 1 '] 1 [ 1 [l i I "
B1 B2 E1E2B1B2E1 E2B1B2E1 E2B1B2E1E2B1B2E1E2 .
SPM FLAME1 FSL OLS 3dttest++ 3dMEMA




WHAT ARE THE PROBLEMS?

. Remember Thirion et al (1.e., Bs are not normal)?




WHAT ARE THE PROBLEMS?

Remember Thirion et al (i.e., Bs are not normal)?

Gaussian RFT assumptions for cluster-wise FWE:
X Stationary spatial smoothness:

Average smoothness for SPM

Average smaothness for AFNI MEMA

Average smoothness for AFNI OLS

Average smoothness for FSL OLS




WHAT ARE THE PROBLEMS?

Remember Thirion et al (i.e., Bs are not normal)?

Gaussian RFT assumptions for cluster-wise FWE:
Non-stationarity co-localizes with false activations:

Spatial distribution of false clusters for SPM

=}

Spatial distribution of false clusters for AFNI MEMA

3]

Spatial distribution of false clusters for AFNI OLS

Spatial distribution of false clusters for FSL FLAME

-]

Spatial distribution of false clusters for FSL OLS
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Correlation

WHAT ARE THE PROBLEMS?

Remember Thirion et al (i.e., Bs are not normal)?
Gaussian RFT assumptions for cluster-wise FWE:

Stationary spatial smoothness
Spatial autocorrelation function ~ squared exponential
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WHAT ARE THE PROBLEMS?

Remember Thirion et al (i.e., Bs are not normal)?
Gaussian RFT assumptions for cluster-wise FWE:

Stationary spatial smoothness
Spatial autocorrelation function ~ squared exponential

Empirical and theoretical spatial
auto correlation functions for SPM

1 o r
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WHAT ARE THE PROBLEMS?

Remember Thirion et al (i.e., Bs are not normal)?
Gaussian RFT assumptions for cluster-wise FWE:

Gaussian RFT assumptions for voxel-wise FWE only:

Activity map has to be sufficiently smooth (e.g., 3 vox
FWHM)

Spatial autocorrelation function must be twice
differentiable



HOW ABOUT TASK DATA?

Ratio

101

10Y

Ratio of FWE-corrected cluster size p-values:
non-parametric / parametric

= CDTp=0.01
#* CDOT p=0.001

100 200 300 400 500 600
Cluster size (voxels)

700

As compared to non-
parametric approaches,
parametric (cluster
FWE corr) p-values are
inflated by a factor of
2-3 (for Z=2.3) and 1-2
(for Z=3.1) orders of
magnitude.



Estimated group mean

OLS — ordinary least squares

OUTLIERS MOG — mixture of gaussians
Bisquare — outlier de-weighting via
Woolrich 2008 iterative reweighted least squares (IRLS)

Randomise — permutation testing

; ; + =
i 7 e EE 20 [ I i
: I | I |
2 | I | % i ¥+
[ I | E 15 | <
| : | ~ +
3 10 _iL
0 o T -
! | | E 5t I |
| I | © I |
' ' | E ot
+ + + | |
N h - ~ + 3
OLS MOG  Bisquare OLS MOG Bisquare

M=0 & No outliers M=1 & 2 positive outlier



Estimated group mean

OLS — ordinary least squares

OUTLIERS MOG — mixture of gaussians

Bisquare — outlier de-weighting via

Woolrich 2008 1terative reweighted least squares (IRLS)

Randomise — permutation testing
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OLS — ordinary least squares

OUTLIERS MOG — mixture of gaussians
Bisquare — outlier de-weighting via
. 1terative reweighted least squares (IRLS)
Woolrich 2008 ; . .
Randomise — permutation testing
Simulation
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OLS — ordinary least squares

OUTLIERS MOG — mixture of gaussians
Bisquare — outlier de-weighting via
. 1terative reweighted least squares (IRLS)
Woolrich 2008 Randomise — permutation testing
Real data
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No outliers With 1 covariate outlier



WHAT CAN YOU DO ABOUT IT?

i. Ignore it (1.e., use an OLS [stand. SPM, AFNI
3dttest++, FSL-OLS]; more common than you’'d
think...)

11.

iii. Use non-parametric (permutation) tests and forget
all of the problems we discussed above:

i. Does not depend on paradigm, smoothing, inference level
(voxel v cluster), cluster thresholding

ii. Only assumption: exchangeability
iii. Available software: SnPM, FSL randomize*, BROCC

[*extra perks: (i) TFCE, (ii) it does permutation on #/_,]
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QUESTION: IF I AM A REVIEWER, SHOULD I
DEMAND A NON-PARAMETRIC RE-ANALYSIS?

Well, theoretically yes, since we now have data clearly
showing that most tools have much higher error rates for
a nominal 5% (perhaps with the exception of FLAME
under specific parameter choices) and you want this field
to be better!

In practice, 1t depends on you. However, i1n my opinion, if
the paper uses FSL and they did a standard FSL group
analysis, then there is no excuse not to run randomise
which, if you've already done a group analysis, takes 1
line and a little (computer) time.




