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Functional Brain
Networks Develop from
a “Local to Distributed”

Organization
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Functional Brain
Networks Develop from
a “Local to Distributed”
Organization
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Functional Brain
Networks Develop from

a “Local to Distributed”
Organization

These results support the hypothesis that
functional brain development proceeds
from a “local” to “distributed” organization.

Fair DA, Cohen AL, Power JD, Dosenbach NUF, et al. (2009) PLoS Comput Biol 5(5): e1000381.



This problem affects all
techniques e
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Not all motion is created equal

T.D. Satterthwaite et al. / Neurolmage 64 (2013) 240-256
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Long-range functional connectivity is
diminished in wiggly subjects
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And short-range functional connectivity
can be augmented in wiggly subjects
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PCC connectivity X motion interaction

Group 1 > Group 10 Group 3 > Group 8 Group 5 > Group 6

< Default Mode Network connectivity (PCC seed) is reduced in subject groups
with more motion, even when differences are miniscule (0.044mm vs.

0.048mm mean motion)
Van Dijk, Sabuncu, & Buckner (2012) NeuroImage



Subject rejection and motion

parameter regression

- Reject participants with more than Xmm motion
across a run

- For non-rejected participants, use estimated
motion parameters as regressors of non-interest

- Might be insufficient to control for changes in
signal intensity that accompany abrupt changes
in head position (Power et al., 2012a;
Satterthwaite et al., 2012; Van Dijk et al., 2012)



A “traditionally” high quality dataset
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Head motion & BOLD relationship
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Fig. 2. Frame-by-frame head displacement is related to frame-by-frame changes in rs-fcMRI signal throughout the brain and across subjects. (A) For each frame of data in the same
subject used in Fig. 1, the framewise displacement (FD) of a frame of data is plotted against the absolute values of the differentials of rs-fcMRI timecourses of 264 ROIs (locations
listed and shown in Table S1 and Figure S3). These data are fitted with a loess curve (black line) sampling the nearest 5000 data points (R) Identically produced loess curves from all
22 subjects in Cohort 1 are plotted against framewise displacement.|There is a clear trend for larger frame-by-frame head displacement to co-occur with larger changes in rs-fcMRI
signal. The inset magnifies the plot between framewise displacements of U and I, demonstrating that this relationsnip exists even 10r very small movements.
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Figure S4: Head motion simultaneously induces changes in BOLD signal in opposite directions in various parts of the brain. In a
single subject, the derivatives of 264 timecourses are plotted in grayscale, with time on the x-axis. Here, white indicates positive
displacements of BOLD signal, and black indicates negative displacements of BOLD signal. Below this plot the framewise displacement
(FD) is plotted in grayscale. Several periods of movement are indicated by the red lines in the upper plot. Looking directly to the right of the
lines (using the red lines as a reference point), note that at identical time points, that BOLD signal is dramatically increased in some ROls,
and simultaneously dramatically decreased at other ROls. Some examples are circled in yellow. At right, whole-brain images of the
derivative of the BOLD signal are plotted for a low-motion frame (top) and a high-motion frame (bottom). Note the ringing artifact, as well as
dorsal-ventral and anterior-posterior orientations of artifactual signal change. Plots in other subjects have similar characteristics.

Power et al. (2012) NeuroImage



“Scrubbing”

Neurolmage 59 (2012) 2142-2154
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Spurious but systematic correlations in functional connectivity MRI networks arise
from subject motion
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Framewise displacement (FD)

* FD; = |Ad;,| + |Ad;| + |Ad,,| + [Aay| + [AB;] + |Ay;]
* Where Ad;, = d;_ ), — d;,

- This variable measures movement of any given
frame relative to the previous frame (as opposed to
relative to the reference frame of motion parameter
estimation & regression).

Power et al. (2012) Neurolmage



DVARS

- D referring to temporal derivative of timecourses
» VARS referring to RMS variance over voxels

- Indexes the rate of change of BOLD signal across the entire
brain at each frame of data.

- DVARS is thus a measure of how much the intensity of a
brain image changes in comparison to the previous
timepoint (as opposed to the global signal, which is the
average value of a brain image at a timepoint).

s (@) () )

Power et al. (2012) Neurolmage




DVARS

- Because frame-to-frame changes in signal intensity
related to movement are significantly greater than those
caused by neurophysiologic changes in the BOLD signal,
this measure provides a natural parameter with which to
directly examine the relationship of movement
measurements and the BOLD response (Fair et al 2013)

s (@) ()

Power et al. (2012) Neurolmage



Choice of a cut-off threshold

- From Power et al. (2012): “After studying the plots
of dozens of healthy adults, values of 0.5 mm for
framewise displacement and 0.5% ABOLD for
DVARS were chosen to represent values well above
the norm found in still subjects.”

= Also removed 1 TR before and 2 TRs after bad frame

- Fair et al. (2013) used an even more stringent FD
cut-off of 0.2 mm and DVARS cut-off of 0.4%
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Figure S5: Floors in DVARS and framewise displacement values exist at all age ranges. Data from six relatively still subjects are shown,
including the age, RMS head position, the framewise displacement (FD), and the DVARS calculations on the functional connectivity image. A
floor in FD and DVARS values exists across all ages. Examination of these plots in hundreds of subjects gave rise to the standard thresholds
used in this study to identify periods of movement, indicated by the horizontal black lines in the plots (0.5 mm framewise displacement and

0.5% ABOLD DVARS (5 on the scales of this figure)).

Power et al. (2012) Neurolmage
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« Temporal masks (red bars) were augmented by also marking
the frames 1 back and 2 forward

e All removed frames must both:
1) be high-motion frames (based on FD)

2) display evidence of widespread and/ or large amplitude
changes in BOLD signal (based on DVARS)

Power et al. (2012) Neurolmage



Example data processing workflow

“fMRI preprocessing”

“functional connectivity
processing”

“scrubbing”

Data from scanner

\

i) central spike removal (1.5T only)
ii) slice timing correction

iii) rigid body realignment
iv) mode 1000 normalization

¥

¥ | FD calculation

\

i\ spatial smonthing (6 mm FWHAM)

iii) multiple regression
white matter and derivative
ventricles and derivative
whole brain and derivative
realignment paramaters and derivatives

v

Resample to 3 mm isotropic voxels ¢

Atlas transformation

Final functional connectivity image (unscrubbed)

— | DVARS calculation |

\

Temporal mask generation :

¥

Application of temporal mask to form
scrubbed functional connectivity image

Power et al. (2012) Neurolma



Impact of scrubbing on rs-tMR| data

Subject 1 Subject 2

unscrubbed B) unscrubbed C)

_
o

subjects

-0.3/0.3 1.0

-

35% of data scrubbed out 39% of data scrubbed out

» Scrubbing increases this long-distance correlation in most subjects, does
not substantially alter it in others, and reduces it in a small number of

subjects. Power et al. (2012) NeuroImage
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Impact of scrubbing on rs-tMR| data
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Ar produced by
motion scrubbing

0 180
Euclidean distance between ROls (mm)

« Scrubbing high-motion frames decreases short-distance
correlations and augments long-distance correlations

Power et al. (2012) Neurolmage



I
I motion scrubbing random scrubbing

Cohort 1
3T 22 7-9 year olds

Cohort 2
3T 29 10-13 year olds

Cohort 3
3T 26 20-24 year olds

Cohort 4
1.5T 42 7-9 year olds

0.2

Ar

-0.2
0.2

Ar

-0.2

0.2

Ar

02!
02

Ar

02!

0 180 0
Euclidean distance
between ROIs (mm)

Euclidean distance

180

Figure S9: Scrubbing high-motion frames
from rs-fcMRI data decreases short-
distance correlations and augments long-
distance correlations in four independent
cohorts. Within an N-subject cohort, 264 ROIls
were applied to scrubbed and unscrubbed
data to produce two 264x264xN correlation
matrices. The unscrubbed matrix was
subtracted from the scrubbed matrix and then
averaged over subjects to produce a
difference matrix (Ar). The mean values of this
matrix are plotted as a function of the
Euclidean distance between ROls in the left
column for each cohort. In each cohort, short-
distance correlations are decreased by
scrubbing high-motion frames from the data,
and medium- to long-distance correlations are
increased. To demonstrate that these effects
arise from the removal of high-motion frames
and not frame removal in general, the number
of frames and the size of contiguous chunks of
removed data were calculated for each
subject, and identical sized chunks of data and
numbers of frames were removed at random
from each subject’s data. Difference matrices
were calculated as before, and data are
presented in the right column. Random
scrubbing abolishes the Ar by distance effect.
This process was repeated 10 times in each
cohort with similar results. For each cohort, the
difference in Ar magnitudes between motion
and random scrubbing was highly significant
(paired two-tail t-test: t = 305; t = 303; t = 260;
t= 360, p =0in all cases)

between ROIs (mm) - Power et al. (2012) Neurolmage
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Impact of scrubbing on rs-tMR| data
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Impact of scrubbing on rs-TtMRI| data

Child Adult
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3T children
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S0 is scrubbing the thing?

- Exclusion of TRs might have unwanted effects:
1. Loss of dfs (might/might not be a big deal at 15t Ivl)

Cohort 1: 3T children Cohort 2: 3T adolescents

a4

a2 2
=3 Q
Z 2
Fe) e
E] E]
@ @ ¢
H#* *
4
2
os 13 o7 o [ 1 Eﬂ a1 0z 03 04 (L3 06 a7 o8 as 1
Proportion of data removed by scrubbing Proportion of data removed by scrubbing
Cohort 3: 3T adults Cohort 4: 1.5T children
: 6
o
. 5
6
g g ¢
KR 2
o =
= =2 1
a o, @
#* *

‘ I
o [
] 01 62 03 04 08 06 07 08 09 1 ] a1 0z o3 04 @5 os 07 o8 09 1

Proportion of data removed by scrubbing Proportion of data removed by scrubbing

Figure ST: The impact of scrubbing on data retention. For each cohort analyzed in this report, the proportion
of data removed within each subject is plotted as a histogram. More data was removed in younger subjects,

who tended to move more than older subjects (see Table 1). All subjects had more than 125 frames (~5 min) of
data remaining after scrubbing.

Power et al. (2012) Neurolmage



R\
S0 is scrubbing the thing?

- Exclusion of TRs might have unwanted effects:
1. Loss of dfs (might/might not be a big deal at 15t Ivl)
2. Uneven loss of dfs across groups/conditions
- Randomly remove equal # of TRs from ‘good’ runs?
» Turns out, that might be problematic too (A)
- Using interpolations to “impute” excised data is also
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R\
S0 is scrubbing the thing?

- Exclusion of TRs might have unwanted effects:
1. Loss of dfs (might/might not be a big deal at 15t Ivl)
2. Uneven loss of dfs across groups/conditions
3. Lose the ability to perform any frequency-based
analysis
- The distance-dependent bias does not appear to be
driven by the mere presence of motion!



Effect of GSR on motion-dependent
correlation
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Does scrubbing correct distance-

dependent bias?
model GS + MO

Y' = XGsBi}s T XWMBi%TM + XLVB;}I T XMOB;V{[C} al XDTB;JT

+ residual
model GS

Y' = XGSBGS + XWMBWM + XLVBLV + XDTBDT + residual

model MO |
YI = XMOB;MO + XDTBIDT + residual

mOdEI MO + \(VMQLOCAL

i i i 1 I .
Y —_ XMOBMO + XWMELDCALBWMELDCAL + XDTBDT + I'E?SIdlldl

model Desplke + MO + WMeocar

Y XMOBMO + XWMELDCALBWMELDL,QL + XDTBDT + I'eSIdllcil

Jo et al. (2013) Journal of Applied Mathematics



Does scrubbing correct distance-
dependent bias?

=
3

= dependence of the correlation estimates on motion, with
¢ results that are more dependent on the level of

® The addition of GS to the model exacerbates the distance-

{ motion censoring.

=]

s Only use WMlocal, since “global” regressors can cause

group differences by spreading hardware artifacts not
visually detectable

Jo et al. (2013) Journal of Applied Mathematics



The order of t

Data from scanner

“fMRI preprocessing”

“functional connectivity
processing”

abowounaN (c10g) [e 19 JoMod

“scrubbing”

i) central spike removal (1.5T only)
ii) slice timing correction

iii) rigid body realignment
iv) mode 1000 normalization

\

Resample to 3 mm isotropic voxels

\

<
<

i) spatial smoothing (6 mm FWHM)

i) temporal bandpass (0.009 Hz < f < 0.08 Hz)

i) multiple regression
white matter and derivative
ventricles and derivative
whole brain and derivative
realignment paramaters and derivatives

v

| Final functional connectivity image (unscrubbed) |

\

|Temp0ra| mask generation | “

\

Application of temporal mask to form
scrubbed functional connectivity image

Despiking

Spikes are identified based on
intensity deviation from a smooth

L' fit to a voxel’s time series relative

Physiological noise
correction

Slice-timing correction

Motion correction

Alignment with anatomy

TO the tine series variance.

Registration is better after

despiking

If nuisance regressors are
obtained before bandpassing
and are to be projected out of

the data after it is bandpassed,
they must be bandpassed by the

o P | 1 P
Q}Jdl.ldl. TV T AUV

[l PN |

Extracting tissue-based
regressors

LY
F

L1t
\JlJﬂ.l.llCll. DlllUUllllLlS

Nuisance regression

Bandpass filtering

Correlation map

With too much censoring, one may
end up with more regressors than
data samples, and the preferred GLM
approach fails. Band%ass filtering
censored or catenated time series
without taking into account temporal
discontinuities is not recommended

Jo et al. (2013)



log, (PSD)

Bandpass filtering

(0.009 < f < 0.08 Hz)

0.08
Frequency (Hz)

— WM
— CSF

Power
spectra

The order of things matters!  anayss

Pipeline 2

Nuisance-removal regression
= -

Bandpass filtering
(0.009 < f < 0.08 Hz)

Spatial smoothing

0.009 0.08
Frequency (Hz)

~ wr
w— 15 — VWM

— GM — (SF

Jo et al. (2013)



“The best model” - reprise

« 3 par: GMS, WM, CSF
e g par: 3par + 6Motion (tra,rot)
- 18 par: gpar + f'(t)

e 36 par: 18 par + °(t)  oas

W High motion (n=100)
M Low motion (n=100)

Motion affects
all frequencies

Signal Change (%)

O 1 1 L 1 i i i i
0O 002 004 006 008 0.10 012 014 0.16

Satterthwaite et al. (2013) Frequency (Hz)
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“The best model” - reprise

MNo Regression

3 Parameter Regression

9 Parameter Regression

/"‘K__‘____d__

18 Parameter Regression

[ 36 Parameter Regression 36 Parameters + Spike
Regression
0 004 008 012 016 |0 004 008 042 016
Frequency (Hz) Frequency (Hz)

Satterthwaite et al. (2013)
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0.01 H

M High motion (n=100)
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IMPROVED PIPELINE

“The best model” - reprise

CONSIDERATIONS

Input data:
rsfc-MRI timeseries

Length of timeseries acquired;
Amount of motion artifact in data;
Study goals: individual differences vs.
group level network definition

v

Confound regression:

36-parameters +
motion spikes

b

Lower parameter models may be more
appropriate for low motion populations;
spike threshold is study- and acquisition

duration-dependent

Band-pass filter:
0.01-0.08 Hz

Higher frequency signals are more
susceptible to motion artifact but also
contribute to connectivity

¥

Connectivity matrix

New measures may replace traditional
Pearson’s correlations in future

Satterthwaite et al. (zu13)




“The best model” - reprise

NMI
Low Motion 0.70 High Motion

Standard Preprocessing Standard Preprocessing

NMI NMI
0.96 0.73

Low Motion High Motion

Improved Preprocessing - Improved Preprocessing
0.86

Modularity is no longer affected by motion!

Satterthwaite et al. (2013)
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Reading list (i)

« Description of the problem:

= Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. (2012)
Spurious but systematic correlations in functional connectivity MRI
networks arise from subject motion. Neuroimage 59(3):2142-54

> Van Dijk KR, Sabuncu MR, Buckner RL. (2012) The influence of head motion
on intrinsic functional connectivity MRI. Neuroimage. 59(1):431-8.

> Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, Hakonarson
H, Gur RC, Gur RE. (2012) Impact of in-scanner head motion on multiple
measures of functional connectivity: relevance for studies of
neurodevelopment in youth. Neuroimage. 2012 Mar;60(1):623-32
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Reading list (ii)

« What can we do about it?

= Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB,
Hakonarson H, Gur RC, Gur RE, Wolf DH. (2013) An improved framework for confound
regression and filtering for control of motion artifact in the preprocessing of resting-state
Jfunctional connectivity data. Neuroimage. 64:240-56.

= Hang Joon Jo, Stephen J. Gotts, Richard C. Reynolds, et al., (2013) Effective Preprocessing
Procedures Virtually Eliminate Distance-Dependent Motion Artifacts in Resting State
FEMRI. Journal of Applied Mathematics, 2013.

= Hallquist MN, Hwang K, Luna B (2013) The nuisance of nuisance regression: Spectral
misspecification in a common approach to resting-state fMRI preprocessing
reintroduces noise and obscures functional connectivity. Neuroimage. 82:208-25.

> Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, Li Q, Zuo XN,
Castellanos FX, Milham MP. (2013) A comprehensive assessment of regional
variation in the impact of head micromovements on functional connectomics.
Neuroimage. 76:183-201.

= Note: this is work-in-progress and a moving target, as new papers come out the field might
converge — The two paper above, however, will give you a good understanding of the kind of
pipeline you should use.
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Reading list (iii)

- For task based analyses

= Christodoulou AG, Bauer TE, Kiehl KA, Feldstein Ewing SW, Bryan AD,
Calhoun VD. (2013) A quality control method for detecting and suppressing
uncorrected residual motion in fMRI studies. Magn Reson Imaging.

31(5):707-17.

= You can find the list (with PubMed links) here:
http://montilab.psych.ucla.edu/fmri-wiki
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