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ABSTRACT2

In recent years, the study of the neural basis of consciousness, particularly in the context3
of patients recovering from severe brain injury, has greatly benefited from the application of4
sophisticated network analysis techniques to functional brain data. Yet, current graph theoretic5
approaches, as employed in the neuroimaging literature, suffer from four important shortcomings.6
First, they require arbitrary fixing of the number of connections (i.e., density) across networks7
which are likely to have different “natural” (i.e., stable) density (e.g., patients vs controls, vegetative8
state vs minimally conscious state patients). Second, when describing networks, they do not9
control for the fact that many characteristics are interrelated, particularly some of the most popular10
metrics employed (e.g., nodal degree, clustering coefficient) – which can lead to spurious results.11
Third, in the clinical domain of disorders of consciousness, there currently are no methods for12
incorporating structural connectivity in the characterization of functional networks which clouds13
the interpretation of functional differences across groups with different underlying pathology as14
well as in longitudinal approaches where structural reorganization processes might be operating.15
Finally, current methods do not allow assessing the dynamics of network change over time. We16
present a different framework for network analysis, based on Exponential Random Graph Models17
(ERGM), which overcomes the above limitations and is thus particularly well suited for clinical18
populations with disorders of consciousness. We demonstrate this approach in the context of19
the longitudinal study of recovery from coma. First, our data show that throughout recovery20
from coma, brain graphs vary in their natural level of connectivity (from 10.4% to 14.5%), which21
conflicts with the standard approach of imposing arbitrary and equal density thresholds across22
networks (e.g., time-points, subjects, groups). Second, we show that failure to consider the23
interrelation between network measures does lead to spurious characterization of both inter- and24
intra-regional brain connectivity. Finally, we show that Seperable Temporal ERGM (STERGM) can25
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be employed to describe network dynamics over time revealing the specific pattern of formation26
and dissolution of connectivity that accompany recovery from coma.27

Keywords: Network Analysis, Exponential Random Graph Model, functional Magnetic Resonance Imaging, Coma, Disorders of28
Consciousness29

1 INTRODUCTION

In the past 15 years, in vivo studies of the healthy and diseased brain have increasingly focused on30
approaches aimed at assessing the spontaneous functional architecture of the brain, conceived as a network31
of interacting regions (Raichle et al., 2001). Network analyses have been successfully employed in many32
fields, including sociology (Freeman, 1978), computer sciences (McQuillan, 1977), public health (Luke33
and Harris, 2007), epidemiology (Lucek and Ott, 1997) and transportation (Guimera et al., 2005), among34
others, to capture salient aspects of each phenomenon. Indeed, while different fields often employ different35
approaches to assessing network properties, they all share the common goal of characterizing important36
aspects of complex network function into a limited number of metrics, which can, jointly, capture both what37
is unique and what is shared across systems. Network approaches have also been extensively employed38
towards understanding specific aspects of cognition (e.g., Cao et al., 2014), development (Fransson et al.,39
2010) and aging (Micheloyannis et al., 2009) , and, perhaps most frequently, the pathological brain (e.g.,40
Alzheimer’s disease; Sanz-Arigita et al., 2010, Parkinson disease; Wu et al., 2009, severe brain injury;41
Pandit et al., 2013). This approach has also found fruitful application in the study of human consciousness42
(e.g., Monti et al., 2013; Chennu et al., 2014; Crone et al., 2017b). Indeed, many of the proposals of43
how human consciousness arises from neural function often make reference to aspects of brain activity44
as a network of interacting areas, such as the reverberation and spread of neural activity across fronto-45
parietal association regions (Baars, 2002; Baars et al., 2003), the presence of synchronized long-range46
activity in specific frequency bands (e.g., Engel and Singer, 2001; Tallon-Baudry, 2009) and specific47
neural circuits (e.g., cortico-thalamic loops; Dehaene and Changeux, 2005), the dynamic competition48
between assemblies of cells (Crick and Koch, 2003), or to the degree to which a network possesses certain49
topological characteristics (e.g., integration and differentiation; Tononi, 2008).50

In the context of disorders of consciousness (DOC; Monti et al., 2010), network approaches to the51
study of functional connectivity have given rise to a fertile body of literature (see Hannawi et al., 2015,52
for a recent review). Yet, there are a number of important methodological challenges which might play53
into the interpretation of such studies (cf., Soddu et al., 2011; Boly et al., 2012a) and which might explain54
some of the contrasting results reported (e.g., the exact role of thalamo-cortical versus cortico-cortical55
connectivity in recovery of consciousness; see Laureys et al., 2000a,b; Vanhaudenhuyse et al., 2010; Boly56
et al., 2009, 2011; Crone et al., 2014; Amico et al., 2017; Crone et al., 2017a). (See also Monti (2012) for57
further discussion).58

In what follows, we propose that it is best to have both seed based and graph theoretic questions in a59
single model. In the neuroimaging literature, there are a number of limitations of current approaches which60
have hindered the ability to use a single model for combining seed based and graph theoretic approaches,61
but there are models that have been developed by other fields (Holland and Leinhardt, 1981; Hunter, 2007;62
Hunter et al., 2008; Goodreau et al., 2009; Handcock et al., 2017).63
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1.1 Four problems in current network analysis approaches64

Current graph theory methods as employed in neuroimaging (Bullmore and Sporns, 2012; Rubinov65
and Sporns, 2010) suffer from a number of important shortcomings which are particularly relevant in the66
domain of disorders of consciousness. (We note that the following discussion is in the context of network67
analysis as currently implemented for neuroimaging data, and is not meant to imply that other fields have68
not found solutions to them. In fact, as we will argue below, we are advocating for importing into the field69
of neuroimaging methods that have successfully been applied in other domains.)70

1.1.1 Problem #1: Arbitrary enforcing of network density71

Conventional graph theoretic approaches in neuroimaging require sparse networks. That is to say,72
they require networks (i.e., connectivity matrices) to have some connections (i.e., edges) with non-zero73
values (typically integer, in binary networks, or fractional, in weighted networks) and some with zero74
values – as opposed, for example, to fully connected networks in which all edges have non-zero values75
(i.e., each node is connected to all other nodes with non-zero edges). Yet, since brain networks are typically76
derived from pairwise correlations across time-series of regions of interest, the starting point for network77
analysis is typically a fully connected network (in fact, a complex network, which is both fully connected78
and has positive and negative edges; Rubinov and Sporns, 2011). It is thus common procedure to make79
the connectivity matrices sparse by fixing their density (i.e., the proportion of non-zero edges to the total80
number of possible edges), which is done by retaining the strongest d connections and setting all remaining81
ones to zero. The resulting network is thus sparse, with density d

N(N−1)/2 , where N is the number of nodes82
in the network. On the one hand, this procedure ensures that any uncovered difference across networks (e.g.,83
patients vs volunteers; time-point A vs time-point B) reflects some systematic aspect of their topological84
characteristics and not, more trivially, the fact that they have different densities. On the other hand, however,85
because of the lack of a principled approach to perform this procedure, it is currently typical to iteratively86
re-calculate network characteristics at several density levels, from a lower bound meant to ensure that87
networks are estimable (such that the average nodal degree is no smaller than 2 × log(N); Watts and88
Strogatz, 1998) to an upper bound such that the mean small-world characteristic of networks is no smaller89
than 1 or 1.5 (e.g., Monti et al., 2013). While conventional, the idea of enforcing graphs to have the same90
density across groups, time-points, or conditions is in itself problematic, because it is not hard to imagine91
that some graphs might be naturally denser than others (see Nielsen et al., 2013). This is particularly92
relevant in the context of the typical comparisons of interest in disorders of consciousness such as patients93
versus healthy volunteers, patients in a Vegetative State versus patients in a Minimally Conscious State94
(versus patients in a Locked-in Syndrome), or within-patient changes over time (e.g., acute-to-chronic95
designs). Of course, similar problems are encountered in many other contexts (e.g., adolescents versus96
older adults) and might even apply to normal, within-group, variability in the healthy brain. Mandating97
equal density across graphs might obscure important differences across conditions of interest, bias results,98
and lead to spurious findings.99

One solution to the problem of network iterative thresholding is to analyze complex networks (i.e.,100
fully connected and signed matrices; Rubinov and Sporns, 2011; Fornito et al., 2013, 2016). Yet, despite this101
problem having been well documented, as shown in a recent review focused on the use of graph-theoretic102
approaches in the clinical context, less than 7% of 106 published papers (up to April 2016) employed103
complex matrices (Hallquist and Hillary, 2018). All remaining studies only considered non-negative and/or104
sparse matrices. In addition, it is important to note two potentially unwanted limitations of using complex105
matrices. First, complex matrices assume that the probability of connectivity between two regions is106
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spatially stationary, but it is in fact well known to be inversely related to distance at both the neuronal and107
region levels (see Hellwig, 2000; Averbeck and Seo, 2008; Braitenberg and Schüz, 1998). Second, the108
use of complex matrices affects the formulation of some metrics (e.g., modularity; Rubinov and Sporns,109
2011; Fornito et al., 2013) because positive and negative edges are treated as separate sparse networks,110
an issue that is further complicated by the use of mean-centering preprocessing strategies CITE LAST111
POWERS which are known to shift the distribution of positive and negative edges CITATION. Furthermore,112
the formulation and interpretation of other metrics (e.g., path based metrics such as characteristic path113
length/local efficiency, betweenness centrality, etc.; Fornito et al., 2013; Wang et al., 2017), are also114
affected since the weights represent both the strength and probability of the connections (i.e., density).115
Thus, analyzing fully connected signed graphs does avoid the thresholding issue but at the cost of clouding116
the interpretation of metrics such as density and path-based graph statistics.117

1.1.2 Problem #2: Network measures are not independent of each-other118

A standard network analysis, as currently implemented in the field, typically assesses a number of dif-119
ferent topological measures in parallel, such as characteristic path length, average clustering, efficiency, and120
small-world characteristic, among others (c.f., Rubinov and Sporns, 2011). Many of these characteristics,121
however, are not independent of each other. In fact, they are often interrelated and can greatly influence122
each other (van Wijk et al., 2010; Braun et al., 2012; Zalesky et al., 2012). Consider two metrics often123
employed in graph theoretic analysis of brain data: clustering coefficient and density. Clustering coefficient124
can be described as the level of segregated neural processing within a network (Rubinov and Sporns, 2010).125
Density, as explained above, is a measure of the number of existing edges within a network (i.e., connection126
with non-zero value), divided by the total number of possible edges. These two network characteristics are127
strongly interrelated: It has been shown that there is a clear relationship between a network’s density and its128
clustering coefficient (Zalesky et al., 2012). Similarly, dependencies between many other network measures129
frequently employed in the neuroimaging literature (e.g., degree, clustering coefficient, characteristic130
path length, and small world index) have also been reported (van Wijk et al., 2010; Braun et al., 2012),131
highlighting the need to control for these relationships in order to minimize the potential for spurious132
findings (see Rubinov and Sporns, 2010; van Wijk et al., 2010). Conventionally, this problem is addressed133
by arbitrarily fixing network density (see Problem #1). This approach, however, suffers from two important134
shortcomings. First, as explained above, different networks might well have different levels of natural – or135
stable – density. Second, it is a rather weak control. For, it only addresses the dependencies of network136
measures on density, but ignores the many other known correlations among features of networks that are137
often assessed (cf., van Wijk et al., 2010), which, to date, have gone unaccounted for in virtually all of the138
extant literature in the field.139

1.1.3 Problem #3: Failure to account for structural information in shaping functional networks140

In the clinical context of DOC, despite the fact that patients are well known to have heterogeneous141
underlying pathology, which introduces many concerns for proper diagnosis (Bruno et al., 2011; Coleman142
et al., 2009), functional (e.g., Boly et al., 2012b; Crone et al., 2017a,b; Ku et al., 2011; Lee et al., 2009;143
Laureys et al., 2000b; Monti et al., 2013; Rosanova et al., 2012) and structural connectivity (Fernández-144
Espejo et al., 2011, 2012; Newcombe et al., 2010; Wilson, 2010; Tollard et al., 2009; Zheng et al., 2017)145
are typically investigated separately. This narrow approach is very problematic because it has been shown,146
in the rodent model (Dı́az-Parra et al., 2017) and in healthy humans (Bettinardi et al., 2017; Messé et al.,147
2015), that structural data can predict the functional connectivity as estimated by correlations in the fMRI148
signal, as well as EEG phase coupling in healthy volunteers (Finger et al., 2016). Failing to include both149
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structural and functional data will have a similar effect on the analysis of functional networks as omitting150
any other graph metric (i.e., problem #2): it will result in improper estimation of the terms in the model151
and potentially spurious results. This issue is particularly important in the clinical context of DOC given152
their highly heterogeneous pathology and the fact that this can change over time, which affects longitudinal153
comparison of brain networks over time.154

Diffusion weighted imaging (DWI) and blood oxygenation level dependent (BOLD) can be used in155
conjunction to estimate connectivity matrices using joint independent component analysis (jICA; Kessler156
et al., 2014), Connectivity Independent Component Analysis (connICA; Amico and Goñi, 2017) or partial157
least squares (PLS; Mišić et al., 2016). In general, all three methods produce multiple group connectivity158
matrices based on the covariance of BOLD and DWI data across all participants. Both jICA and connICA159
produce multiple components that are maximally spatially independent (for a complete explanation of160
jICA see Calhoun et al., 2006, 2009; Sui et al., 2011, and for a complete explanation of connICA see161
Amico et al., 2017). PLS produce a linear combination of latent variables that maximally covary with162
each other based on weighted structural and functional connections (for a complete explanation of PLS163
see McIntosh and Lobaugh, 2004; Abdi, 2010; Krishnan et al., 2011; McIntosh and Mišić, 2013). These164
methods incorporate both structural and functional connectivity in the estimation of the connectivity165
matrices, but they require researchers to choose the number of components (in jICA and connICA) or166
number of latent variables (in PLS). Changing these parameters influences the results of the connectivity167
estimation and the standards for these parameters are still being investigated for both jICA and connICA168
(Hyvärinen and Oja, 2000; Calhoun et al., 2009; Abou-Elseoud et al., 2010; Ray et al., 2013). We thus169
propose an alternative to these methods that avoids the necessity to estimate the functional and structural170
connectivity jointly. In the approach we describe below, the structural and functional connectivity matrices171
are estimated separately, and the former is used as a variable in estimating graph statistics for the latter (see172
section §2.6 for a complete description).173

1.1.4 Problem #4: Network dynamics – Estimating network change over time174

Finally, contrary to the assumption underlying conventional network analysis in neuroimaging,175
connectivity between areas is unlikely to be stationary processes. Rather, brain activity might best be176
viewed as a malleable and variable process over time (Ioannides, 2007). Yet, even in the few cases where177
this limitation has been addressed (e.g., Barttfeld et al., 2015), these types of approaches do not quantify178
dynamic change of connectivity across time (or states). Rather, they just dissect a time-series into multiple179
static networks and compare them over their respective topological properties. In other words, even these180
approaches are static in nature and fail to capture the dynamics of network connectivity over time. In the181
context of DOC, for example, this means that longitudinal analysis of brain data can be employed to reveal182
differences in topological properties of networks at two different time-points, but do not allow saying183
anything of the process of interest, which is the dynamics of how one network transitioned into another184
(e.g., how a network transformed as consciousness was regained over time).185

1.2 Exponential Random Graph Models (ERGM)186

In response to these four shortcomings of current network analysis, we present and demonstrate a187
novel (in the context of DOC, for other contexts within neuroimaging, cf.: Simpson et al., 2011, 2012,188
2013) approach to graph analysis, referred to as Exponential Random Graph Models (ERGM; Holland189
and Leinhardt, 1981). The core idea underlying ERGM is that instead of considering graphs as fixed190
entities which can be described in terms of topological properties (e.g., clustering, path length, small world191
property), it attempts to generate hypotheses about the (unobserved) stochastic processes that gave rise to192
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an observed network (Robins et al., 2007). Contrary to the prevalent approach in neuroimaging, then, the193
presence/absence of an edge within a network is not considered to be a fixed property of a graph, but rather194
a random variable generated by a stochastic process. In other words, rather than assuming the observed195
network as “given” and fix, and describing its topological characteristics (e.g., characteristic path length,196
clustering coefficient), it tries to characterize the processes that have generated the observed network. One197
particularly appealing aspect of this approach is that, so long as the total number of nodes (i.e., ROIs)198
constituting a network remains unchanged, it allows for comparing across networks with different density199
levels, thereby solving problem #1. The ERGM framework uses the following exponential model:200

Pθ(Y = y) =
exp(θT g(y))

c(θ)
(1)

where θ is a parameter vector that is modeled by g(y) (i.e., any statistic of the graph). The parameter201
c(θ) is a normalizing constant representing the parameter estimate for all possible graphs (Hunter et al.,202
2008). This normalizing constant is not able to be analytically solved due to the combinatorics of the graph203
structure. We can nonetheless approximate the unknown population mean using c(θs) (i.e., the sample204
mean):205

c(θ)

c(θs)
= Eθs exp(θ − θs)T g(yi)

c(θ)

c(θs)
≈ 1

M

M∑
i=1

exp(θ − θs)T g(yi) (2)

for derivations (see Hunter et al., 2008). These equations allows for an approximation of the population206
mean using sample mean. A bootstrapping method using Markov Chain Monte Carlo (MCMC) methods207
is used to sample and estimate the population mean. These methods assume Markovian principles of208
independent draws and the ability to reach equilibrium. Equilibrium is the state in which any edge that209
is toggled on or off results in an equally probable graph. The general method is to take the ratio of the210
probabilities of Yij = 1 (i.e., adding a single edge) and Yij = 0 (i.e., no edge) conditioned on Y Cij = yCij211
(i.e., all other pair of nodes in the graph).212

P (Yij = 1|Y Cij = yCij)

P (Yij = 0|Y Cij = yCij)
= exp θ∗(s(Yij = 1)− s(Yij = 0))

log
P (Yij = 1|Y Cij = yCij)

P (Yij = 0|Y Cij = yCij)
= θ∗∆(s(Yij))

LPL(θ) =
∑

log[P (Yij = yij)|(Y Cij = yCij)] (3)

where the LPL(θ) is the log-pseudolikelihood for θ, which is maximized by taking the maximum pseu-213
dolikelihood for θ (Hunter et al., 2008). This estimation process is performed for the model with all the214
parameters (i.e., θ). The estimates give the mean and standard error. These estimates were tested for215
significance in each functional data set. Due to the MCMC, a t-statistic can be estimated and is reported in216
the model output along with a p-value.217
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For interpretation purposes, equation 1 can be represented as follows (the full derivations can be found218
in Hunter et al., 2008):219

logit(Pθ(Yij = 1|nactors, Y Cij )) =
K∑
k=1

θkδZk(y) (4)

where k is the number of network statistics in the model and θk is the parameter estimate for each statistic.220
The δZk(y) is the change in network statistic if a edge were added between any node i and j. Thus, the221
interpretation of the network statistics involve the change in probability of an adding a edge with certain222
network statistic. The significance of a parameter estimate is one compared to the expected parameter223
estimate in a null model with the probability of all edges equal to 0.5 (i.e., Erdös and Rényi, 1959).224

In what follows, we first demonstrate the insidiousness of problem #2 in the context of well characte-225
rized, freely-available, data on the business ties of Florentine families in the 15th century (Kent, 1978), and226
then we apply the powerful and flexible ERGM approach to estimating network statistics for characterizing227
(brain) networks in the longitudinal context of a patient recovering after coma after severe traumatic brain228
injury (TBI). To anticipate the key points that will follow, ERGM, which has been successfully employed229
in other contexts (Goodreau et al., 2009; Handcock et al., 2017; Holland and Leinhardt, 1981; Hunter,230
2007; Hunter et al., 2008), offers a number of substantial advantages which are particularly important in231
the clinical context of DOC. First, it does not require imposing (and assuming) the same level of density232
across graphs, thus allowing estimating characteristics of each graph at its “natural” density level. Second,233
it allows for controlling the dependencies between network characteristics. In this sense, in contrast to234
the conventional approach, which can be viewed as a series of univariate regressions (i.e., one per metric)235
assessing the topological characteristics across groups of graphs (e.g., patient groups, controls versus236
patients, etc), ERGM is making use of a multiple regression framework (Goodreau et al., 2009), in which237
all features are considered together, and thus returns the “unique” contribution of each network measure.238
Third, the multiple regression framework extends to graph theoretic measures characterizing the structural239
connectivity of a network, thus accounting and “parceling out” the effect of cross-sectional differences240
(e.g., Zheng et al., 2017) and longitudinal changes in structural connectivity (e.g., Voss et al., 2006;241
Thengone et al., 2016) across graphs. Finally, a temporal implementation of this technique, Separable242
Temporal ERGM (STERGM), allows assessing the dynamic changes of network properties occurring over243
observations (e.g., time, clinical groups).244

2 METHODS

2.1 Florentine Business Ties Data245

We demonstrate the importance of problem #2 using freely available data for social network analysis.246
The dataset, which has been extensively characterized in previous work, describes business connections247
between Florentine families in the 15th century (Kent, 1978). We use this data analysis to demonstrate248
the interrelationship between network measures and how failure to include them in a single full model249
can lead to spurious results. Specifically, the relationship between network measures is manipulated250
by constructing two identical networks with one unique difference between them – that is, whether the251
Barbadori family belongs to the blue group (Figure 1, left) or the green group (Figure 1, right). As we will252
discuss further below, this example focuses on the relationship between node mixing terms (i.e., a measure253
of within-group [blue versus green] connectivity) and a higher order term called geometrically weighted254
edge shared partners (GWESP; a type of triangles term; see section §2.6 for full description of both terms).255
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To demonstrate the effects of relationships between measures, we estimate three models per each network:256
two partial models including an edges term and either the higher order term (PMA) or the mixing terms257
(PMB), and the Full model (FM) containing all terms. As we will show, for each network, partial models258
return spurious results with respect to both significance and magnitude of the parameter estimates.259

Figure 1. Florentine business ties networks. Florentine business ties data with additional grouping. Left:
Network A. Right: Network B. We note that two networks are identical except for the Barbadori family
being allocated to the blue group in the left graph and to the green group in the right graph.

2.2 Patient260

We demonstrate the use of ERGM models using longitudinal data from a patient recovering from a261
severe brain injury. A 40 to 45 year old person suffered a severe TBI due to a fall. The patient suffered262
pulmonary contusion and liver laceration, and presented with a post-resuscitation Glasgow Coma Scale263
(GCS; Teasdale and Jennett, 1974) of 3. Computerized tomography (CT) revealed skull fractures, traumatic264
subarachnoid hemorrhage, extradural hematoma, subdural hematoma, and bilateral frontal lobe contusions.265

2.3 Experimental Design266

The patient underwent 4 imaging sessions over the span of 6 months post injury. The first 3 sessions267
occurred within a month post injury on the 11th, 18th and 25th days post-injury. The chronic session268
took place 181 days post-injury. At the time of the acute imaging sessions, the patient presented a GCS269
of 3, 6, and 10, respectively. At each session the patient underwent (among other clinical and research270
sequences) anatomical (T1-weighted) and functional (T2∗-weighted) data protocols. T1-weighted images271
were acquired with a 3D MPRAGE sequence (repetition time [TR] = 1900 ms, echo time [TE] = 3.43,272
1× 1× 1 mm). BOLD functional data were acquired with a gradient-echo echo planar image (TR = 2000273
ms; TE = 25 ms, 3.5× 3.5× 4 mm). Diffusion Weighted data were acquired with an echo planar sequence274
(TR = 9000 ms, TE = 90 ms, 64 directions, 3× 3× 3) using a b-value of 1000 and acquiring an additional275
B0 image. Data were acquired on a 3 Tesla Siemens TimTrio and a 3 Tesla Siemens Prisma system at the276
Ronald Reagan Medical Center at the University of California Los Angeles. The study was approved by277
the UCLA institutional review board (IRB). Informed consent was obtained from surrogates, as per state278
regulations.279
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2.4 Data Preprocessing280

2.4.1 BOLD data preprocessing281

The functional data underwent a number of conventional preprocessing steps including brain extraction,282
slice timing correction, motion correction, band-pass filtering (0.08 ≤ Hz ≤ 0.1), and removal of linear283
and quadratic trends. A nuisance regression was employed to parcel out signals of non-interest including284
motion parameters, white matter, cerebral spinal fluid, and full-brain mean signal (which has been shown to285
alleviate the consequences of in-scanner motion; Power et al., 2012). Affine registration of the functional286
data to the standard template (MNI) was performed using Advanced Normalization Tools (ANTs; Avants287
et al., 2008, 2011).288

2.4.2 DWI data preprocessing289

The diffusion data were preprocessed using the following pipeline: DWI preprocessing, registrations,290
probabilistic tractography with tractography thresholding. All of these processes were run using a bash291
script in parallel using the GNU Parallel package (Tange, 2011).292

DWI preprocessing. All preprocessing procedures were visually checked for optimal quality. The T1-293
weighted data were brain extracted (optiBET; Lutkenhoff et al., 2014) and bias field corrected (BrainSuite294
BFC; Shattuck et al., 2001). The diffusion-weighted data were prepared for tractography with the following295
steps: 1) visual quality checking of raw images; 2) artifact checking/removal and motion correction with296
vector rotation (DTIprep; Oguz et al., 2014); 3) eddy current distortion correction followed by tensor297
fitting and estimation of diffusivity metrics (BrainSuite’s BDP; Bhushan et al., 2012; Haldar and Leahy,298
2013); 4) brain extraction of the b0 image (BET; Smith, 2002); and 5) GPU-enhanced Bayesian estimation299
of the diffusion profile with up to two principal directions per voxel (i.e., allowing for crossing/kissing300
streamlines) using FSL’s bedpostx (Behrens et al., 2003; Hernández et al., 2013).301

Registrations. All registrations were visually checked for optimal quality. The following steps were302
conducted: 1) linear registration of the native diffusion data (b0 image) to the native T1-weighted data303
(ANTs’ IntermodalityIntrasubject; Avants et al., 2011); 2) nonlinear registration (ANTs) of the native304
T1-weighted data to the Montreal Neurological Institute (MNI) standard space (MNI Avg 152 T1 2x2x2mm305
standard brain); 3) forward or inverse transform concatenations (ANTs; Avants et al., 2011) to move306
between native diffusion, native T1, and the MNI template.307

Probabilistic tractography. GPU-enhanced probabilistic tractography between all regions of the308
whole-brain atlas (i.e., iteratively seeding from each region to all other regions as targets) was conducted309
with the “matrix1” option in FSL’s probtrackx2 (Behrens et al., 2003, 2007). A minimum distance of310
4.8mm (i.e., 2 voxel widths) was set to prevent artificial streamlines passing through contiguous regions.311
The output matrix of streamline counts between all regions was thresholded to remove spurious streamlines312
with an optimization procedure that minimizes asymmetries between the seed/target assignments for each313
ROI-ROI pair (MANIA; Shadi et al., 2016).314

2.5 Brain Network Construction315

For each dataset (both the functional and diffusion data), a graph was constructed to provide a316
mathematical description of the brain as a functional network. Brain graphs were constructed in two steps.317
First, these data sets were parceled into 148 ROIs spanning the cortex, sub-cortical nuclei, cerebellum and318
brainstem (see Figure 2). This parcellation scheme, which was defined independently of our data, is made319
freely available by Craddock and colleagues (Craddock et al., 2012). While other parcellation schemes are320

Frontiers 9



Dell’Italia et al. Exponential Random Graph Models in Disorders of Consciousness

Figure 2. Parcellation for structural and functional connectivity. Cortical and subcortical parcellation
of the brain data (Craddock et al., 2012). The imaging sessions’ data sets were parcellated into 148 ROIs
throughout the cortex, sub-cortical nuclei, cerebellum and brainstem. (Figure from Monti et al., 2013)

available (e.g., Harvard-Oxford atlas, AAL atlas), the present one has two main advantages (cf., Monti321
et al., 2013). First, being functionally defined, it clusters spatially proximal voxels by the homogeneity of322
their functional connections as opposed to clustering voxels by anatomical position which, as exemplified323
by the case of the precentral gyrus ROIs in both the AAL and the Harvard-Oxford atlases, might cluster324
together functionally distinct sub-regions. Second, at our chosen level of resolution, the Craddock ROIs325
have almost twice the granularity as either structural atlas (i.e., 193 ROIs versus, 90 and 112 for the AAL326
and Harvard-Oxford atlases, respectively). Following parcellation, the average time-course of all voxel327
within each ROI were extracted and correlated across each pair of regions.328

Functional connectivity was assessed with a partial correlation method using the Markov Network329
Toolbox (MoNeT; Narayan et al., 2015) in MATLAB. This approach, referred to as R3 (as in resampling,330
random penalization, and random effects), combines a penalized maximum likelihood estimation – or331
graphical lasso – procedure with a resampling-based (bootstrapped) model selection procedure, on whitened332
BOLD timeseries, to infer fully-data driven stable functional connectivity estimates at the single-subject333
(or group) level. Under this approach, each fMRI time series is repeatedly bootstrapped in order to334
estimate the within-subject variability and matrices of penalty parameters which reduce selection bias and335
variability. This method thus reduces the spurious connections from indirect sources arising from the high336
dimensionality of fMRI data often seen when using the conventional Pearson’s r method. Using partial337
correlations with regularization parameters, the indirect sources are eliminated and the sparsity of each338
matrix is determined by the within subject variability. Thus, each functional data set returns a connectivity339
matrix that represents connectivity from direct sources, rather than indirect ones, and that is sparse, as340
determined on a single-subject basis through bootstrapping and regulatization. This latter point side-steps341
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entirely the need for arbitrary and iterative thresholding approaches (Rubinov and Sporns, 2010). It is342
important to point out, however, another important difference between the partial correlations approach343
described above and the standard correlation approach to estimating brain networks as performed by most344
previous work (e.g., Boveroux et al., 2010; Monti et al., 2013; Schrouff et al., 2011). On the one hand, the345
conventional correlational approach has the advantage of allowing straightforward interpretation of the346
elements of adjacency matrices as strength of the functional connectivity between nodes. On the other hand,347
the matrices generated are fully connected and thus requiring application of a non-linear transformation348
(e.g., thresholding) in order to render them sparse – a condition necessary for application of many common349
graph theory metrics (Rubinov and Sporns, 2010). In contrast, the partial correlation method employed350
here returns a sparse matrix. However, it does so at the cost of losing interpretability of graph weights351
which can now be seen as the functional connectivity between two nodes i and j after controlling for the352
correlations with other nodes in the neighborhood (i.e., connected with) – say – i. For this reason, matrices353
obtained with this novel methodology are typically binarized, thus resulting in a sparse matrix of ones and354
zeros indexing the presence/absence of functional connectivity between each pair of nodes (i.e., ROIs).355

2.6 Graph Statistics356

All ERGM models we used to analyze the patient data included the same graph statistics. The model357
used for all the data sets was specified as follows:358

Pθ(Y = y) =

exp(θ1edges + θ2nodecov(degree) + θ3nodecov(efficency) + θ4nodecov(cluster)
+ θ5nodemix(latent) + θ6nodemix(resting) + θ7gwesp(alpha = λ))

c(θ)
(5)

Edges refers to the total number of edges for each functional connectivity graph. This term allows control359
for the density of each graph. In this sense it is thus similar to the intercept in a linear regression and is thus360
typically not interpreted or further analyzed.361

There are four nodal covariate terms for the diffusion data—three nodal covariates (i.e., degree,362
efficiency and cluster) and the nodemix (latent) term –and a nodal covariate for the functional connectivity363
(i.e., nodemix for resting). Degree is the number of edges for each structural node. Efficiency is the local364
efficiency of each node. Cluster is the clustering coefficient of each node. The nodecov term estimates365
the probability of functional connectivity edge as a function of each distribution of the structural terms366
(i.e., degree, local efficiency and clustering coefficient). A positive coefficient indicates an increase in the367
probability of a functional connectivity edge as structural term increases in magnitude. On the other hand,368
a negative coefficient indicates an increase in probability of a functional connectivity edge as the structural369
term decreases.370

As shown in equation 5, there are two nodemix terms: latent and resting. The nodemix (latent) is the371
within and between module connectivity of the structural connectivity. Thus, this mixing term represents372
the probability of a functional connectivity edge given the modular membership based on the structural373
connectivity. The number of modules and modular membership of each node is determined by a position374
latent cluster ERGM (Handcock et al., 2007; Krivitsky and Handcock, 2008). These models have shown to375
be able to use a latent space model with an a priori determined number of dimensions using the parameter d376
(3 dimensions). The nodes are arranged in a euclidean system with proximity equating to probability of an377
edge. The clusters are determined by the parameter G (3, 4, 7 and 6 for Acute first, second, third sessions378
and Chronic session, respectively). This parameter sets the number of Gaussian spherical clusters that379
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are introduced in the latent space. The estimation of position latent cluster ERGM is a two step Bayesian380
estimation, but the exact specification is beyond the scope of this paper (see Handcock et al., 2007).381

The nodemix (resting) is our mixing term for determining the inter- and intra-regional connectivity of382
the resting state networks and sub-cortical regions of the functional data. Multiple parameter estimates were383
produced for this term. Additionally, these mixing terms used the exogenous node labels for each node’s384
membership in the seven resting state networks (Yeo et al., 2011) and sub-cortical regions. Each node of385
the brain network was labeled either: frontoparietal, visual, somato-motor, limbic, dorsal attention, ventral386
attention, default, subcortex and thalamus. Each combination of the inter- and intra-regional connectivity387
produced a mixing term and parameter estimate. For example, one inter-regional mixing term would be388
frontoparietal and thalamic connectivity. This parameter estimate would give the probability of an edge389
existing between the frontoparietal network and thalamus. An example of intra-regional mixing term390
would be frontoparietal to frontroparietal. This term would express the probably of an edge within the391
frontoparietal network. These mixing terms were used to assess the connectivity between the within the392
resting state networks, between the resting state networks, within the sub-cortical regions, between the393
sub-cortical regions, and between resting state networks and sub-cortical regions. This term incorporates394
questions that would be addressed using seed based connectivity analyses.395

The geometrically weighted edged shared partners (GWESP) can be expressed by this equation396
(Hunter, 2007):397

θt = logλt

v(y; θt) = eθt
n−2∑
i=1

[
1− (1− e−θt)i

]
EPi(y) (6)

In this equation, v is the GWESP term and θt is the log of the decay parameter that was fixed in398
all the data sets. The EPi(y) is the edge shared partners term for the entire graph. It accounts for the399
number of each type of edge shared partner. An edged shared partner is triangle that shares a common base.400
Edge shared partners is a metric used to quantify the amount of clustering in the form of transitivity in a401
network. High positive parameter estimates indicate that transitivity is present above and beyond all the402
other statistics in the model. Transitivity is a higher order relationship present in most graphs which are the403
local and/or global communication and the amount of local cohesion. Differences in transitivity between404
patients could be a key change that occurs from injury. This would be a disruption of the clustering found405
within the patient’s brain. This type of disruption would hamper local and/or global communication and406
additionally it would indicate a lack of local cohesion within a network.407

The analysis was performed using the ERGM package (Handcock et al., 2017) in R. There are two408
ERGMs used on the patient data. A full model (FM) and used all the terms from equation 5. The FM409
was fit multiple times to get assess the proper λ (the decay parameter) for the GWESP term. The range of410
λ began at 0.05 and increase by increments of 0.05 up to 2.0. Each iteration was checked by inspecting411
the diagnostics of the MCMC. The models that have the best fit for the parameter estimate GWESP were412
chosen (i.e., λ = 0.45). A second model, the partial model (PM) was fit. The structural terms (i.e., the three413
nodecov and the nodemix for latent) were omitted from this model to demonstrate the effects on the rest of414
the parameter estimates.415

The FM’s graph statistics were chosen based on two reasons: the type of functional data being416
analyzed (i.e., resting state data) and the first three problems outlined above (see section §1.1.1, §1.1.2 and417
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§1.1.3). The nodemix (resting) terms were chosen because this patient’s functional connectivity matrices418
were estimated from the BOLD correlations during the resting state scans. Thus, the intra- and inter-419
regional connectivity would be best characterized by putative resting state networks. The number of resting420
networks were chosen based on a data driven approach (i.e., Yeo et al., 2011) that estimates a number421
of networks based on stability of clusters (for details on the clustering algorithm see Lashkari et al.,422
2010) estimated from 1000 subjects’ functional data. A seven network parcellation was chosen because it423
minimized the instability (Yeo et al., 2011) and matches what has been previously discussed in the literature424
(e.g., Buckner, 2010; Cohen et al., 2008; Fox et al., 2006; Vincent et al., 2008). Additionally, the thalamus425
group was added because of its possible involvement in DOC (e.g., Crone et al., 2014; Laureys et al.,426
2000b; Vanhaudenhuyse et al., 2010; Zhou et al., 2011) or anesthesia induced loss of consciousness (e.g.,427
Boveroux et al., 2010; Martuzzi et al., 2010; Schrouff et al., 2011; Stamatakis et al., 2010). Finally, the428
subcortical and cerebellum groups were added to ensure every node fit a grouping label.429

The edges term allows for networks with varying density to be modeled and compared (cf., Problem430
#1, section §1.1.1). The higher order term (i.e., GWESP) describes the local and/or global communication431
which could be an important aspect in the recovery from brain injury (e.g., Chennu et al., 2014; Crone432
et al., 2014; Schröter et al., 2012), and because it alleviates the problem of interrelation among graph433
theoretic measures (cf., Problem #2, section §1.1.2) by accounting for the higher order term’s variance and434
thus avoiding it being improperly allocated to lower order terms (i.e., edges, node mixing, and structural435
terms). As shown below, failing to include the higher order term can affect the estimation of parameters436
in either magnitude or sign. Structural connectivity is important because, as stated in third problem (cf.,437
section §1.1.3), it can be severely affected by TBI, systematically changing over time and/or patient cohorts,438
and because it is interrelated with functional connectivity. Thus, we chose four terms for the structural439
connectivity that would capture the number of connections of each node (i.e., degree), a measure of440
integration (i.e., local efficiency Rubinov and Sporns, 2010), and higher order relationships (i.e., clustering441
and modularity). The two higher order terms were chosen because they capture two different higher order442
dynamics: local grouping of nodes (i.e., clustering coefficient Rubinov and Sporns, 2010) and community443
structure (i.e., modularity; Rubinov and Sporns, 2010). Overall, our model controls for the density of444
the functional connectivity and the effects of structural connectivity on the functional connectivity while445
modeling the intra- and inter-connectivity of the resting state networks and the effects of higher order terms446
(i.e., GWESP).447

The models were assessed by using goodness of fit (GOF) plots (Hunter et al., 2008). After the model448
was estimated, a thousand simulations were run from the model statistics. These simulations were compared449
to the original graph’s probabilities for each graph statistic (e.g., the probability of nodes with a specific450
degree, probability edge shared partners and the probability minimum geodesic distances). This is to ensure451
that the model represents a graph similar to the original data that it was modeled from. The metrics chosen452
for this example is degree distribution, edge wise shared partner, minimum geodesic distance (another form453
of local path length) and the nodal covariates from equation 5. These are the most commonly used graph454
metrics because they capture important characteristics of graphs that capture the central tendencies and455
clustering of graphs. The MCMC diagnostics were assessed for each parameter estimate. The GOF plots456
were used to assess the fit of the FM and all four GOF plots was assessed for goodness of fit.457

2.7 Separable Temporal Exponential Random Graph Model458

STERGM (Krivitsky and Handcock, 2014) is an extension of the original ERGM. It is used to assess459
the dynamics of networks as they change over time . The same underlying methods for estimating ERGM460
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is used in STERGM. A model with network statistics is used to estimate the parameter estimates for a461
network that changes over time. To achieve this, two separate networks are investigated. A formation462
network is generated conditional on forming edges,463

P (Y + = y+|Y t; θ+) =
exp(θ+g(y+, X))

c(θ+, X, Y +(Y t))
, y+ ∈ Y +(yt) (7)

where a formation network Y + is characterized by formation parameters θ+ (Krivitsky and Handcock,464
2014). The formation network statistics are g(y+, X) and the normalizing constant is c(θ+, X, Y +(Y t)).465
The second network formed is a dissolution network that is conditional on the edges that dissolve. This466
network is represented by the same variables labeled with minus instead of a plus,467

P (Y − = y−|Y t; θ−) =
exp(θ−g(y−, X))

c(θ−, X, Y −(Y t))
, y− ∈ Y −(yt) (8)

where a dissolution network Y− is characterized by dissolution parameters θ− (Krivitsky and Handcock,468
2014). The dissolution network statistics are g(y−, X) and the normalizing constant is c(θ−, X, Y − (Y t)).469
These networks can form a new network at time t+ 1 by applying formation and dissolution networks on470
yt. This can be expressed as:471

Y t+1 = Y t ∪ (Y + − Y t)− (Y tY −) (9)

The formation and dissolution networks are independent of each other across the t+ 1 time points472
(Krivitsky and Handcock, 2014). STERGM has the unique ability to model networks as they transform over473
time enabling research questions about the dynamics of a network. The same model in Equation 5 was used474
in both the formation and dissolution models. The quantifications of these networks are similar to ERGM,475
but these two models slightly change the interpretation of the parameter estimates. In the formation model,476
a positive parameter estimate indicates a tendency for edges for a network statistic form at time point t+ 1,477
and a negative parameter estimate indicates a lack of formation of edges for a particular network statistic at478
time point t+ 1. The dissolution model has two separate interpretations based on the sign of the parameter479
estimate. A negative parameter estimates are interpreted as edges are more likely to dissolve and positive480
parameters indicate edges are more likely to be preserved. Despite these differences in interpretation, all the481
same procedures were used in STERGM as were used in ERGM (PM, FM, quality control using MCMC482
diagnostics, and assessing fit using GOF) for both the formation and dissolution models.483

3 RESULTS

3.1 Florentine Business Ties484

Network A has both the mixing term and triangles term as significant model statistics when modeling485
them separately (i.e., PMA and PMB see Table 1). When they are combined together into the FM, the486
mixing term remains significant but the triangle term is no longer significant. Thus, the FM for the487
Florentine business ties properly attributes the variance of each graph theory statistic and the selective488
mixing term remains significant. The network B has just the triangles term significant in the PMA and FM.489
The mixing term is neither significant in the PMB nor the FM.490
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3.2 Patient recovery491

Consistent with the argument we made in the introduction, as shown in Figure 3 (bottom row),492
the brain network construction using MoNeT resulted in four graphs with different estimated densities.493
Specifically, the three acute sessions returned graph densities of 10.4%, 13.5%, 12.9%, for the first, second,494
and third time-points, respectively, while the chronic session presented a graph density of 14.5% . Overall,495
then, the density differential between acute session 1 and chronic session was 4.1%, and the general496
acute-to-chronic pattern appeared to be a trend towards greater density. The structural connectivity (Figure497
3, top row), on the other hand, had less variability in the densities of the graphs over time (i.e., 6.6%, 6%,498
5.3% and 5.3%; a total difference of 1.3% between acute session 1 and chronic session).499

3.2.1 Integrating functional and structural connectivity500

When we compared the properties of the network as estimated relying exclusively on functional501
connectivity (i.e., partial model; PM) as compared to when both functional and structural connectivity502
were jointly considered (i.e., full model; FM), the PM included two significant positive inter-regional503
connectivity parameters (i.e., between thalamus and subcortex and between limbic network and subcortex;504
see top of Figure 4) which were no longer significant once structural connectivity was included (i.e., in the505
PM), suggesting their spurious status. More broadly, the positive parameter estimates became less positive506
and the negative parameter estimates became more negative. The only structural terms that were significant507
were the nodal covariate mixing term for connectivity between latent clusters 2 and 3 and within latent508
clusters 3 (see Table 2).509

At the second acute time-point, the PM and the FM again differed, with the latter showing an additional510
significant positive parameter estimate for connections between dorsal attention network and subcortex511
(see bottom Figure 4), three inter-regional connectivity parameter estimates that became non-significant512

ERGM Parameter Estimates

Network A Network B

PMA PMB FM PMA PMB FM

Edges −2.44∗∗∗ −3.42∗∗∗ −3.54∗∗∗ −2.46∗∗∗ −2.27∗∗∗ −2.75∗∗∗

(0.40) (0.72) (0.70) (0.39) (0.43) (0.49)
Nodal Covariate Mixing: Within Group 0 1.63 1.60 0.15 0.31

(0.95) (0.88) (0.75) (0.65)
Nodal Covariate Mixing: Within Group 1 2.60∗∗ 2.16∗∗ 1.17 0.91

(0.80) (0.82) (0.61) (0.48)
GWESP (Fixed 0.8) 0.53∗ 0.32 0.54∗ 0.50∗

(0.23) (0.28) (0.23) (0.23)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 1. Florentine business ties models. Three models are run on each network in figure 4: PMA, PMB ,
FM. The PMA has just the edges and triangles term. The PMB has just the edges and mixing term. The
Full model has all three terms. Each term has a parameter estimate, a standard error in parenthesis and a
p-value indicated by asterisks. The LATEX code to create this table was produced by the R package called
texreg (Leifeld, 2013).
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Figure 3. Patient recovery: Network densities. Top Four Graphs are the thresholded (MANIA; Shadi
et al., 2016) structural connectivity. The first acute imaging session, second acute imaging session, third
acute imaging session and chronic imaging sessions had 6.6%, 6%, 5.3% and 5.3% densities, respectively.
Bottom Four Graphs are the thresholded functional connectivity using partial correlations (MoNeT;
Narayan et al., 2015). The first acute imaging session, second acute imaging session, third acute imaging
session and chronic imaging sessions had 10.4%, 13.5%, 12.9% and 14.5% densities, respectively.

(i.e., connections between cerebellum and subcortex, default network and frontoparietal network and visual513
network and dorsal attention; see bottom Figure 4) and two intra-regional connectivity parameter estimates514
that became non-significant (i.e., connections within the subcortex and ventral attention network; see515
bottom Figure 4). Overall, the parameter estimates both increased and decreased in magnitude with or516
without changing significance. Similar to the first acute session, the structural terms were only significant517
for the nodal covariate mixing term (i.e., between latent clusters 1 and 3, and within latent clusters 1, 2, 3518
and 4; see Table 2).519

In the third acute session, six inter-regional positive parameter estimates (i.e., connections between520
cerebellum and dorsal attention network, frontoparietal network and dorsal attention network, frontal521
parietal network and ventral attention network, dorsal attention network and somatomotor network, limbic522
network and visual network and limbic network and subcortex; see right Figure 5) and three intra-regional523
positive parameter estimates (i.e., connections within the dorsal attention network, somatomotor network524
and ventral attention network; see Figure 5) became non-significant once structural connectivity was525
included in the model. Similar to the first acute session, the parameter estimates generally decreased in526
magnitude. Finally, consistent with the first two acute sessions, the only significant structural feature was527
the nodal covariate mixing term (i.e., between latent clusters 2 and 3, latent clusters 1 and 4, latent clusters528
1 and 6, latent clusters 3 and 6 and latent clusters 5 and 7, and within latent clusters 1, 2, 3, 4, 5, 6 and 7;529
see Table 3).530

In the chronic session, two inter-regional positive parameter estimates became non-significant after531
inclusion of the structural connectivity terms (i.e., between default network and frontoparetial network532
and default network and visual network; see right Figure 5). Conversely, unlike in the acute sessions,533
we also observed the reverse effect, with the the visual network and ventral attention network parameter534
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Figure 4. Patient recovery ERGM. Comparison of results for the FM and PM for acute sessions 1 and 2.
The left figures display the FM mixing term results for the Acute first and second sessions. The mixing term
term accounts for the inter- and intra-regional connectivity. The legend displays tints of red for significant
positive parameter estimates and the significant negative parameter estimates are colored in tints of blue.
The right figures display the PM mixing term results for the Acute first and second sessions. The coloring
scheme is the same as the FM. These figures are symmetric within each model because the graphs are
undirected.

estimate became significant in the FM. Additionally, the structural terms were only significant for the nodal535
covariate mixing term (i.e., between latent clusters 1 and 3, latent clusters 2 and 3, latent clusters 1 and 4,536
latent clusters 3 and 5, latent clusters 4 and 5, latent clusters 1 and 6 and latent clusters 2 and 6 and within537
latent clusters 4; see Table 3).538
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Figure 5. Patient recovery ERGM. Comparison of results for the FM and PM for acute session 3 and
chronic session. The left figures display the FM mixing term results for the Acute third session and Chronic
session. The mixing term term accounts for the inter- and intra-regional connectivity. The legend displays
tints of red for significant positive parameter estimates and the significant negative parameter estimates are
colored in tints of blue. The right figures display the PM mixing term results for the Acute third session
and Chronic session. The coloring scheme is the same as the FM. These figures are symmetric within each
model because the graphs are undirected.

Finally, across all imaging sessions the GWESP parameter estimate was reduced in magnitude (see539
Table 2 and 3) by the addition of the structural terms, with the largest difference seen in third acute session540
(see Table 3). Additionally, the GOF (see Figure 6) are fit for every statistic in all of the FM. All the GOF541
terms fit well except for a portion of the edge shared partners, but in the model statistics (the far right in542
Figure 6) are well fit to the original data.543
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As we will discuss below, the differences we are reporting between the results obtained with the544
conventional model (i.e., PM), estimated form functional connectivity alone, and those obtained with the545
full model (i.e., FM), estimated from both the functional and structural connectivity, demonstrates the risk546
of drawing spurious conclusions when relying on the partial model.547

3.3 STERGM548

The Temporal Separable ERGM (STERGM) allowed us to look at the temporal dynamics of recovery549
post severe brain injury with two parallel models: a formation model and a dissolution model. The formation550
model produces parameter estimates describing how likely it is that new connections (i.e., edges) form551

ERGM Parameter Estimates
First Acute Second Acute

PM FM PM FM
Edges −6.29∗∗∗ −6.34∗∗∗ −7.64∗∗∗ −7.71∗∗∗

(0.28) (0.56) (0.36) (0.59)
Nodal Covariate: Degree (Structural) 0.00 0.00

(0.00) (0.01)
Nodal Covariate: Local Efficiency (Structural) 0.10 0.35

(0.44) (0.35)
Nodal Covariate: Cluster Coefficient (Structural) −0.08 −0.33

(0.34) (0.29)
Nodal Covariate Mixing: Latent Cluster 1 to 1 (Structural) 0.03 1.01∗∗∗

(0.08) (0.15)
Nodal Covariate Mixing: Latent Cluster 2 to 2 (Structural) 0.07 0.82∗∗∗

(0.17) (0.11)
Nodal Covariate Mixing: Latent Cluster 1 to 3 (Structural) −0.11 0.33∗∗

(0.08) (0.12)
Nodal Covariate Mixing: Latent Cluster 2 to 3 (Structural) −0.28∗ 0.16

(0.12) (0.11)
Nodal Covariate Mixing: Latent Cluster 3 to 3 (Structural) 0.24∗ 0.91∗∗∗

(0.10) (0.12)
Nodal Covariate Mixing: Latent Cluster 1 to 4 (Structural) 0.23

(0.13)
Nodal Covariate Mixing: Latent Cluster 2 to 4 (Structural) 0.22

(0.12)
Nodal Covariate Mixing: Latent Cluster 3 to 4 (Structural) −0.09

(0.12)
Nodal Covariate Mixing: Latent Cluster 4 to 4 (Structural) 0.86∗∗∗

(0.13)
GWESP (Fixed 0.45) 2.09∗∗∗ 2.07∗∗∗ 3.11∗∗∗ 2.94∗∗∗

(0.13) (0.13) (0.21) (0.20)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 2. Patient recovery ERGM. Parameter estimates for the FM and PM of the Acute first and second
sessions. The mixing term for resting state are excluded because they are in Figure 4. All of the structural
parameter estimates are listed in the FM columns. The edges and GWESP parameter estimates are for the
functional connectivity in the PMs and FMs. The LATEX code to create this table was produced by the R
package called texreg (Leifeld, 2013)

.

Frontiers 19



Dell’Italia et al. Exponential Random Graph Models in Disorders of Consciousness

ERGM Parameter Estimates
Third Acute Chronic

PM FM PM FM
Edges −7.97∗∗∗ −7.27∗∗∗ −8.05∗∗∗ −8.07∗∗∗

(0.36) (0.63) (0.42) (0.57)
Nodal Covariate: Degree (Structural −0.01 0.01

(0.01) (0.01)
Nodal Covariate: Local Efficiency (Structural) 0.02 −0.11

(0.12) (0.16)
Nodal Covariate: Cluster Coefficient (Structural) −0.22 0.33

(0.15) (0.17)
Nodal Covariate Mixing: Latent Cluster 1 to 1 (Structural) 2.33∗∗∗ 0.34

(0.42) (0.24)
Nodal Covariate Mixing: Latent Cluster 2 to 2 (Structural) 1.17∗∗∗ −0.06

(0.23) (0.24)
Nodal Covariate Mixing: Latent Cluster 1 to 3 (Structural) −0.48 −0.34∗

(0.44) (0.17)
Nodal Covariate Mixing: Latent Cluster 2 to 3 (Structural) 0.47∗ −0.51∗∗

(0.23) (0.17)
Nodal Covariate Mixing: Latent Cluster 3 to 3 (Structural) 1.24∗∗∗ 0.29

(0.24) (0.15)
Nodal Covariate Mixing: Latent Cluster 1 to 4 (Structural) 1.25∗∗∗ −0.52∗∗

(0.26) (0.20)
Nodal Covariate Mixing: Latent Cluster 2 to 4 (Structural) 0.35 −0.55∗∗

(0.24) (0.19)
Nodal Covariate Mixing: Latent Cluster 3 to 4 (Structural) 0.35 −0.55∗∗∗

(0.23) (0.16)
Nodal Covariate Mixing: Latent Cluster 4 to 4 (Structural) 1.11∗∗∗ 0.56∗∗

(0.23) (0.18)
Nodal Covariate Mixing: Latent Cluster 1 to 5 (Structural) −0.35 −0.20

(0.51) (0.20)
Nodal Covariate Mixing: Latent Cluster 2 to 5 (Structural) −0.01 −0.26

(0.26) (0.20)
Nodal Covariate Mixing: Latent Cluster 3 to 5 (Structural) 0.27 −0.52∗∗

(0.26) (0.17)
Nodal Covariate Mixing: Latent Cluster 4 to 5 (Structural) 0.16 −0.39∗

(0.26) (0.19)
Nodal Covariate Mixing: Latent Cluster 5 to 5 (Structural) 2.09∗∗∗ 0.42

(0.31) (0.23)
Nodal Covariate Mixing: Latent Cluster 1 to 6 (Structural) 1.20∗∗∗ −0.42∗

(0.30) (0.20)
Nodal Covariate Mixing: Latent Cluster 2 to 6 (Structural) 0.60∗ −0.37∗

(0.24) (0.18)
Nodal Covariate Mixing: Latent Cluster 3 to 6 (Structural) −0.95∗ −0.23

(0.40) (0.16)
Nodal Covariate Mixing: Latent Cluster 4 to 6 (Structural) 0.39 −0.22

(0.24) (0.17)
Nodal Covariate Mixing: Latent Cluster 5 to 6 (Structural) 0.37 −0.03

(0.29) (0.18)
Nodal Covariate Mixing: Latent Cluster 6 to 6 (Structural) 1.74∗∗∗ 0.30

(0.29) (0.19)
Nodal Covariate Mixing: Latent Cluster 1 to 7 (Structural) −0.54

(0.51)
Nodal Covariate Mixing: Latent Cluster 2 to 7 (Structural) 0.42

(0.24)
Nodal Covariate Mixing: Latent Cluster 3 to 7 (Structural) 0.28

(0.25)
Nodal Covariate Mixing: Latent Cluster 4 to 7 (Structural) −0.15

(0.27)
Nodal Covariate Mixing: Latent Cluster 5 to 7 (Structural) 0.59∗

(0.26)
Nodal Covariate Mixing: Latent Cluster 6 to 7 (Structural) 0.30

(0.27)
Nodal Covariate Mixing: Latent Cluster 7 to 7 (Structural) 1.48∗∗∗

(0.26)
GWESP (Fixed 0.45) 3.23∗∗∗ 2.87∗∗∗ 3.48∗∗∗ 3.28∗∗∗

(0.20) (0.20) (0.24) (0.24)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 3. Patient Recovery ERGM. Parameter estimates for the FM and PM of the Acute third session
and Chronic session. The mixing term for resting state are excluded because they are in Figure 5. All of the
structural parameter estimates are listed in the FM columns. The edges and GWESP parameter estimates
are for the functional connectivity in the PMs and FMs. The LATEX code to create this table was produced
by the R package called texreg (Leifeld, 2013).
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Figure 6. Patient recovery ERGM. Goodness of fit plots for the four FM (i.e., Acute Session 1, Acute
Session 2, Acute Session 3 and Chronic Session). The black line marks the respective networks; the
box-and-wiskers indicate the model data obtained from the 1000 simulations of each model (see section
§2.6)

throughout the recovery from coma, while the dissolution model produces parameter estimates describing552
how likely it is that existing connections dissolve (or persist) throughout recovery.553

In our index patient, the formation model showed a significant negative edges parameter estimate554
and a significant positive GWESP parameter estimate, the latter implying a tendency to form edges over555
time that close triangles (see Table 4). Additionally, none of the structural nodal covariates were found556
to be significant (see Table 4). There were, however, four significantly positive parameter estimates for557
intra-regional connectivity (i.e., default network, frontoparietal network, thalamus, and visual network; see558
left Figure 7), three significantly negative parameter estimates for inter-regional connectivity (i.e., between559
default network and visual network, somatomotor network and frontoparietal network, and ventral attention560
network and visual network; see left Figure 7), and two significantly positive parameter estimates for inter-561
regional connectivity (i.e., between default network and thalamus, and somatomotor network and ventral562
attention network; see left Figure 7). The dissolution model has a significantly negative edges parameter563
estimate and significantly positive GWESP parameter estimate (see Table 4). Also, none of the structural564
terms were significant for the dissolution model. Additionally, all ten parameter estimates for intra-regional565
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Figure 7. Patient Recovery STERGM. Results for the formation (left) and dissolution (right) models
over 6 months. The mixing term term accounts for the inter- and intra-regional connectivity that form over
6 months. The legend displays tints of red for significant positive parameter estimates and the significant
negative parameter estimates are colored in tints of blue. The right figure displays the dissolution model
STERGM mixing term results. The coloring scheme is the same as the formation model, but the mixing
term represents the connectivity that are dissolved or preserved over 6 months. These figures are symmetric
within each model because the graphs are undirected.

connectivity (i.e., cerebellum, default network, dorsal attention network, frontoparietal network, limbic566
network, somatomotor network, subcortex, thalamus, ventral attention network, and visual network)567
significantly positive (see right Figure 7) and 11 significantly positive parameter estimates for inter-regional568
connectivity (i.e., between cerebellum and visual network, default network and frontoparietal network,569
dorsal attention network and frontoparietal network, dorsal attention network and somatomotor network,570
dorsal attention network and ventral attention network, dorsal attention network and visual network,571
frontoparietal network and thalamus, somatomotor network and ventral attention network, subcortex and572
thalamus, and thalamus and visual network; see right Figure 7). Finally, the GOF (see Figure 8) were fit573
well for every statistic in both the formation and dissolution model. Overall, the model was thus well fit574
for both the formation and dissolution models. All the GOF terms fit well except for a portion of the edge575
shared partners, but in the model statistics are well fit to the original data.576

4 DISCUSSION

In this work, we have addressed four issues which, while general to the implementation of network theory in577
the field of functional neuroimaging, are particularly relevant to studies in the clinical context of disorders578
of consciousness. In what follows we discuss how the novel (for this field) approach we have demonstrated579
above in a patient recovering from coma resolves specifically each of the four problems outlined in the580
introduction.581
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STERGM Parameter Estimates
Formation Dissolution

Edges −10.03∗∗∗ −3.56∗

(1.04) (1.79)
Nodal Covariate: Degree (Structural) 0.01 0.03

(0.01) (0.02)
Nodal Covariate: Local Efficiency (Structural) −0.14 −1.27

(0.64) (1.64)
Nodal Covariate: Cluster Coefficient (Structural) 0.34 1.33

(0.49) (1.25)
Nodal Covariate Mixing: Latent Cluster 1 to 1 (Structural) −0.04 −0.01

(0.09) (0.21)
Nodal Covariate Mixing: Latent Cluster 2 to 2 (Structural) 0.04 0.30

(0.17) (0.41)
Nodal Covariate Mixing: Latent Cluster 1 to 3 (Structural) −0.12 −0.11

(0.09) (0.24)
Nodal Covariate Mixing: Latent Cluster 2 to 3 (Structural) −0.04 0.19

(0.11) (0.32)
Nodal Covariate Mixing: Latent Cluster 3 to 3 (Structural) −0.00 −0.13

(0.14) (0.32)
GWESP (Fixed 0.75) 3.26∗∗∗

(0.33)
GWESP (Fixed 0.25) 0.27∗∗∗

(0.08)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 4. Patient Recovery STERGM. Parameter estimates for the formation and dissolution models.
The mixing term for resting state are excluded because they are in Figure 7. All of the structural parameter
estimates are listed in the FM columns. The edges and GWESP parameter estimates are for the functional
connectivity in the formation and dissolution models. The LATEX code to create this table was produced
by the R package called texreg (Leifeld, 2013).

4.1 Solution to problem #1: Use natural density, not arbitrarily fixed density (i.e., use a582
multiple regression framework – Part I)583

As our longitudinal data shows, consistent with results from other domains of neuroscience (see584
Milham et al., 2012; Nielsen et al., 2013) , brain graphs are susceptible to having different “natural” levels585
of density at which they are the most stable and which might thus be ideal to estimate network properties.586
In our data, over the progression of 6 months post injury, as the patient recovered consciousness and587
cognitive function, the natural brain graph density went from 10.4% to 14.5%. These density differences588
were revealed thanks to the use of MoNeT (Narayan et al., 2015), a tool which combines a penalized589
maximum likelihood estimation with a resampling-based (bootstrapped) model selection procedure in590
order to find the most stable level of sparse brain graph given a set of time-dependent measurements (e.g.,591
fMRI data). On the one hand, as we will explain below, these differences might well reflect important592
aspects of network dynamics in the recovery of consciousness post severe brain injury. On the other hand,593
regardless of the ultimate interpretation of the finding in of itself, had we employed the standard approach594
and enforced equal density across brain graphs in order to allow comparability (Rubinov and Sporns, 2010;595
van Wijk et al., 2010), these differences would have been obscured and would have introduced a bias in596
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the direct comparison of topological properties across graphs. Ultimately, an accurate estimation of the597
connectivity is necessary to correctly model the connectivity. ERGM and STERGM allow for controlling598
the density without having to fix the density for all graphs. This allows for data driven approaches to allow599
the density to vary based on the stability of the connectivity estimates. This natural variance could reveal600
differences in graph statistics that would otherwise be masked by fixing density. Overall, this result further601
demonstrates that, when arbitrarily enforcing equal density across graphs, we are in fact biasing our results602
towards the graphs with natural density closest to the threshold employed. While we show this in the603
context of time, it immediately translates to cross-sectional analyses that are also typical of the field of604
DoC (e.g., healthy controls versus patients), with the prediction that the more different the natural density605
across groups, the greater the bias in the results.606

4.2 Solution to problem #2: Control for interrelations across network metrics (i.e., use a607
multiple regression framework – Part II)608

As discussed above, ERGM can cope with comparing graphs with different natural densities because609
it factors in density as a variable in the model (in other words, it controls explicitly for different densities).610

Figure 8. Patient recovery STERGM. Goodness of fit plots for the formation (top) and dissolution
(bottom) models. The black line marks the formation and dissolution networks observed over time in the
patient’s graphs between the first Acute session and the Chronic session; the box-and-wiskers indicate the
model data obtained from the 1000 simulations of each model (see section §2.6)
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Similarly, ERGM can also control for interrelations across the many metrics that are typically estimated611
by explicitly including them all in a single model. As mentioned in the introduction, this approach is612
akin to performing a multiple regression model in which each network feature is evaluated for its unique613
contribution to the graph, as opposed to the current graph theoretic approach dominating in neuroimaging,614
which is akin to running several single-variable regressions, one per topological feature investigated. The615
Florentine business networks were used to demonstrate the effect of leaving out significant contributing616
factors to the model, something that renders our ERGM vulnerable to correlations between graph properties617
similar to the current conventional approached (Rubinov and Sporns, 2010). As shown in Table 1, using618
partial models can lead to incorrectly estimating the magnitude or the significance of network measures.619
For example, in network A (Figure 1, left), the failure to include the mixing terms leads to a significant620
GWESP term, however, it appears to be overestimated as compared to the FM (where it is not significant).621
In other words, on the basis of the partial model results, one would be justified in concluding that triadic622
closure (i.e., the tendency for edges to appear where they complete triangles) is a key stochastic process623
underlying the network. Yet, the FM shows that this result is spurious and is in fact due to the mixing624
term – that is, to the dynamics of within-group connectivity, and not triadic closure. As shown in Table 1,625
changing group membership of one node alone, presering all other aspects of the network, affected both626
qualitatively and quantitatively the network measures (compare the FM columns for PMA and PMB in627
Table 1). Similarly to Network A, Network B’s partial models returned different parameter estimates than628
the FM. As we will discuss below, a similar effect is at play in the neuroimaging data where, failure to629
include structural information, could have lead to incorrectly attributing to functional connectivity between630
the fronto-parietal and the default mode networks a network characteristic that is in fact due to structural631
connectivity (i.e., problem #3, cf., Figures 4 and 5).632

4.3 Solution to problem #3: Adjust for the effects of structural connectivity on633
functional connectivity (i.e., use a multiple regression framework – Part III)634

As shown in the results, ERGM is capable of addressing the currently unresolved issue of integrating635
functional and structural connectivity in a unique framework (Hunter, 2007; Hunter et al., 2008; Handcock636
et al., 2017). Analogously to the two previous points, the solution employed by ERGM is to include637
structural connectivity terms in the model, thus explicitly adjusting for the relationship between the638
structural and functional connectivity. In our data, inclusion of structural terms in the model affected all639
other parameter estimates, empirically demonstrating that, in the context of recovery of consciousness after640
severe brain injury, failing to include structural connectivity is tantamount to mis-specifying the model641
(similarly to not including network density [i.e., problem #1] or not modeling all estimated metrics in a642
single model [i.e., problem #2]). While we recognize that this is likely to be an issue in any field where643
structural connectivity might differ across groups and/or individuals, there is also little doubt that this644
is particularly problematic in the context of disorders of consciousness where the underlying structural645
architecture is likely to be substantially different from healthy volunteers (e.g. Lutkenhoff et al., 2015;646
Fernández-Espejo et al., 2011), across different clinical groups (e.g. Zheng et al., 2017), and over time (e.g.647
Lutkenhoff et al., 2013; Thengone et al., 2016, as well as in the data presented here).648

Specifically, our results show that when structural data are included (i.e., in the FMs), the probability649
of inter- and intra-regional connectivity changes – as compared to the PMs – including: parameter estimates650
with a higher magnitude in the PM (e.g., connections between default network and ventral attention651
network, limbic network to thalamus, and within limbic network in the Acute First session), parameters652
with a lower magnitude in PM (e.g., connections between visual network and cerebellum, visual network653
and subcortex or visual network and thalamus in the Acute Second session), and parameters which went654
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from non-significant in the PM to significant in the FM (e.g., connections between dorsal attention network655
and subcortex in the Acute Second session or connections between visual network and ventral attention in656
the Chronic session) and viceversa (e.g., connections between default network and frontoparietal network657
in the Chronic session or connections between thalamus and subcortex in the Acute First session). These658
results have immediate theoretical implications for the field of disorders of consciousness in as much as659
the partial ERGM model in our patient shows increased likelihood of connectivity between the default660
mode and the fronto-parietal networks throughout recovery from coma (see Figure 4 and 5). This could be661
(mistakenly) construed as bearing on the issue of the relationship between the “external awareness” and662
“internal awareness” networks in disorders of consciousness (Boly et al., 2008a,b). For, the relationship663
between these two networks was no longer observed once structural data was included in the FM exposing664
the initial finding as spurious and likely reflecting improper attribution of variance due to leaving out the665
structural terms from the model.666

Finally, we note that ERGM has an important advantage over other techniques in the context of667
integrating functional and structural connectivity. Indeed, previous approaches only made use of the668
structural connectivity in order to predict the functional network (Bettinardi et al., 2017; Messé et al., 2015)669
or in order to jointly estimate the functional and structural connectivity (Kessler et al., 2014; Mišić et al.,670
2016; Amico and Goñi, 2017). ERGM, however, allows estimating the influence of structural connectivity671
on the properties of the functional networks, something which, even at the level of one patient alone, has a672
large enough effect to change the significance and/or magnitude of the network’s parameter estimates.673

4.4 Solution to problem #4: Assess dynamics of change across time-points, not static674
differences across time-points675

Finally, an additional advantage of this new approach, is the ability to directly analyze network676
dynamics over time – an issue that is very important in the context of loss and recovery of consciousness677
after severe brain injury (Laureys et al., 2000b; Crone et al., 2017a). In our example data, the two STERGM678
models uncovered a strong positive parameter estimates for intra-regional connectivity in all networks, for679
the dissolution model, indicating that in the process of recovery there are strong tendencies to preserve680
existing edges across time. Additionally, there are four positive parameter estimates for the formation of681
new edges, implying that as our patient recovered he was more likely to establish new connectivity within682
and between networks. Taken together, the tendency of our patient to maintain existing connections and683
develop novel ones might well explain why we observed a tendency over time for the “natural” density684
of networks to increase throughout recovery. It should also be pointed out that while we did not find any685
negative parameter estimate in the dissolution model, a significant negative estimate could be interpreted as686
evidence for neural reorganization, another important advantage of ERGM in the context of disorders of687
consciousness (e.g., Voss et al., 2006).688

5 CONCLUSIONS AND FUTURE WORK

Network analyses are an attempt to synthesize complex processes into a small number of metrics. In689
this paper we have introduced a novel (in the context of DOC, for other contexts within neuroimaging,690
cf.: Simpson et al., 2011, 2012, 2013) approach to estimating network properties, Exponential Random691
Graph Models, which overcome four important challenges faced by current graph theoretic approaches to692
brain data and which are particularly consequential in the context of disorders of consciousness. The main693
advantage of ERGM over current approaches is the fact that it adopts a multiple regression framework694
in lieu of multiple parallel simple regressions (i.e., one per each metric). Under this multiple regression695
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framework, brain networks can be compared across densities – since the density of each will be controlled696
for within the model. This side-steps the issue of having to impose the same arbitrary sparsity across697
networks which are likely to have very different stable levels of density, as is the case, for example,698
between severely brain injured patients and controls or in longitudinal recovery. Similarly, by including699
in a unified model structural and functional data, it is possible to acknowledge and control for the fact700
that patients surviving severe brain injury are likely to have very heterogeneous brain pathology and thus701
profound differences in structural substrate – a fact that is currently ignored in the extant literature. Even in702
one patient alone, direct comparison of the conventional partial model with the full model demonstrated703
how failing to consider structural information can lead to spurious results and erroneous conclusions.704
Furthermore, ERGM can be extended to assess dynamics of change thus allowing to discover the network705
evolution that govern loss and recovery of consciousness over time, as opposed to comparing static graphs706
at different time-points.707

Finally, we end this paper by pointing out that the reader can implement (ST)ERGM as performed708
here using the freely distributed ergm package (Handcock et al., 2017) in R and the Markov Network709
Toolbox (MoNeT; Narayan et al., 2015) in MATLAB.710
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Voss, H. U., Uluç, A. M., Dyke, J. P., Watts, R., Kobylarz, E. J., McCandliss, B. D., et al. (2006). Possible1018
axonal regrowth in late recovery from the minimally conscious state. The Journal of clinical investigation1019
116, 2005–2011. doi:10.1172/JCI270211020

Wang, Y., Ghumare, E., Vandenberghe, R., and Dupont, P. (2017). Comparison of different generalizations1021
of clustering coefficient and local efficiency for weighted undirected graphs. Neural computation 29,1022
313–331. doi:10.1162/NECO a 009141023

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature 393, 4401024
Wilson, C. (2010). Aetiological differences in neuroanatomy of the vegetative state: insights from diffusion1025

tensor imaging and functional implications. Journal of neurology, neurosurgery, and psychiatry 81,1026
475–476. doi:10.1136/jnnp.2010.2058151027

Wu, T., Wang, L., Chen, Y., Zhao, C., Li, K., and Chan, P. (2009). Changes of functional connectivity1028
of the motor network in the resting state in parkinson’s disease. Neuroscience letters 460, 6–10.1029
doi:10.1016/j.neulet.2009.05.0461030

Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. (2011).1031
The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of1032
neurophysiology 106, 1125–1165. doi:10.1152/jn.00338.20111033

Zalesky, A., Fornito, A., and Bullmore, E. (2012). On the use of correlation as a measure of network1034
connectivity. NeuroImage 60, 2096–2106. doi:10.1016/j.neuroimage.2012.02.0011035

Zheng, Z. S., Reggente, N., Lutkenhoff, E., Owen, A. M., and Monti, M. M. (2017). Disentangling1036
disorders of consciousness: Insights from diffusion tensor imaging and machine learning. Human brain1037
mapping 38, 431–443. doi:10.1002/hbm.233701038

Zhou, J., Liu, X., Song, W., Yang, Y., Zhao, Z., Ling, F., et al. (2011). Specific and nonspecific1039
thalamocortical functional connectivity in normal and vegetative states. Consciousness and cognition 20,1040
257–268. doi:10.1016/j.concog.2010.08.0031041

This is a provisional file, not the final typeset article 34


	Introduction
	Four problems in current network analysis approaches
	Problem #1: Arbitrary enforcing of network density
	Problem #2: Network measures are not independent of each-other
	Problem #3: Failure to account for structural information in shaping functional networks
	Problem #4: Network dynamics – Estimating network change over time

	Exponential Random Graph Models (ERGM)

	Methods
	Florentine Business Ties Data
	Patient
	Experimental Design
	Data Preprocessing
	BOLD data preprocessing
	DWI data preprocessing

	Brain Network Construction
	Graph Statistics
	Separable Temporal Exponential Random Graph Model

	Results
	Florentine Business Ties
	Patient recovery
	Integrating functional and structural connectivity

	STERGM

	Discussion
	Solution to problem #1: Use natural density, not arbitrarily fixed density (i.e., use a multiple regression framework – Part I)
	Solution to problem #2: Control for interrelations across network metrics (i.e., use a multiple regression framework – Part II)
	Solution to problem #3: Adjust for the effects of structural connectivity on functional connectivity (i.e., use a multiple regression framework – Part III)
	Solution to problem #4: Assess dynamics of change across time-points, not static differences across time-points

	Conclusions and Future Work

