Motion in resting-state fMRI
analysis:
Comparing different preprocessing
strategies
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Functional Brain
Networks Develop from
a “Local to Distributed”
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Not all motion is created equal

T.D. Satterthwaite et al. / Neurolmage 64 (2013) 240-256
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Long-range functional connectivity is
diminished in wiggly subjects
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And short-range functional connectivity
can be augmented in wiggly subjects
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This problem affects all
techniques e
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PCC connectivity X motion interaction

WMotion can “destroy” long-ravge conmectivity

s+|llas+ Wl aliest

Group 3 > Group 8 Group 5 > Group 6

(f)

< Default Mode Network connectivity (PCC seed) is reduced in subject groups
with more motion, even when differences are miniscule (0.044mm vs.

0.048mm mean motion)
Van Dijk, Sabuncu, & Buckner (2012) NeuroImage
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Framewise displacement (FD)

» FD; = |Ad;,| + |Ady,| + [Ady,| + [Aay| + |AB;] + Ay
* Where Ad;, = d;_ ), — d;,

- This variable measures movement of any given
frame relative to the previous frame (as opposed to
relative to the reference frame of motion parameter
estimation & regression).

Power et al. (2012) Neurolmage



N

DVARS

- D referring to temporal derivative of timecourses
» VARS referring to RMS variance over voxels

- Indexes the rate of change of BOLD signal across the entire
brain at each frame of data.

- DVARS is a measure of how much the intensity of a brain
image changes in comparison to the previous timepoint (as
opposed to the global signal, which is the average value of a
brain image at a timepoint).

DVARS(AI); = \/ < AL (%) 2> = \/ < (%)t (;‘})]2>

Power et al. (2012) Neurolmage
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DVARS

- Because frame-to-frame changes in signal intensity
related to movement are significantly greater than those
caused by neurophysiologic changes in the BOLD signal,
this measure provides a natural parameter with which to
directly examine the relationship of movement
measurements and the BOLD response (Fair et al 2013)

DVARS(AI); = \/ < AL (%) 2> = \/ < (%)t (;‘})]2>

Power et al. (2012) Neurolmage
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Single subject motion RMS = 0.55mm

A “traditionally” high quality dataset
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Head motion & BOLD relationship
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Fig. 2. Frame-by-frame head displacement is related to frame-by-frame changes in rs-fcMRI signal throughout the brain and across subjects. (A) For each frame of data in the same
subject used in Fig. 1, the framewise displacement (FD) of a frame of data is plotted against the absolute values of the differentials of rs-fcMRI timecourses of 264 ROIs (locations
listed and shown in Table S1 and Figure S3). These data are fitted with a loess curve (hlack line) sampling the nearest 5000 data points. (B) Identically produced loess curves from all
22 subjects in Cohort 1 are plotted against framewise displacement.|There is a clear trend for larger frame-by-frame head displacement to co-occur with larger changes in rs-fcMRI
signal. The inset magnifies the plot between framewise displacements of Uand I, demonstrating that this refationsnip exists even for very small movements.




Intro

why does traditional motion correction vot work?
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Figure S4: Head motion simultaneously induces changes in BOLD signal in opposite directions in various parts of the brain. In a
single subject, the derivatives of 264 timecourses are plotted in grayscale, with time on the x-axis. Here, white indicates positive
displacements of BOLD signal, and black indicates negative displacements of BOLD signal. Below this plot the framewise displacement
(FD) is plotted in grayscale. Several periods of movement are indicated by the red lines in the upper plot. Looking directly to the right of the
lines (using the red lines as a reference point), note that at identical time points, that BOLD signal is dramatically increased in some ROls,
and simultaneously dramatically decreased at other ROls. Some examples are circled in yellow. At right, whole-brain images of the
derivative of the BOLD signal are plotted for a low-motion frame (top) and a high-motion frame (bottom). Note the ringing artifact, as well as
dorsal-ventral and anterior-posterior orientations of artifactual signal change. Plots in other subjects have similar characteristics.
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Low-motion subjects
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Intermittent-motion subjects
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Head shift-motion subjects
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Expand motion parameters (+Spikes)

- 3 par: GMS, WM, CSF
e g par: 3par + 6Motion (tra,rot)
- 18 par: gpar + '(t)
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Expand motion parameters (+Spikes)

MNo Regression [ 3 Parameter Regression
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IMPROVED PIPELINE

e

Expand motion parameters (+Spikes)

CONSIDERATIONS

Input data:
rsfc-MRI timeseries

Length of timeseries acquired;
Amount of motion artifact in data;
Study goals: individual differences vs.
group level network definition

v

Confound regression:

36-parameters +
motion spikes

b

Lower parameter models may be more
appropriate for low motion populations;
spike threshold is study- and acquisition

duration-dependent

Band-pass filter:
0.01-0.08 Hz

Higher frequency signals are more
susceptible to motion artifact but also
contribute to connectivity

v

Connectivity matrix

New measures may replace traditional
Pearson’s correlations in future

Satterthwaite et al. (2013)
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Power et al 2014, Neuroimage

Include global SIgnal regressmn

zzzzzz 1

rm‘-—»ML PO VS P ) et A NM‘A...

From a perspective of eliminating
artifactual variance, especially motion-
related variance, GSR is unquestionably
powerful. However, GSR is a
contentious step in processing |e.g.,
mean centering of correlations will
induce false anticorrelations and
potentially remove signal ]




aCompCor(50) ‘H

Complor: component based voise correction method

Post-FCP

MeanWC aCompCor aCompCor5

aCompCor50 A

Low motion

Density
Mid motion

Distributon of FD/DVARS Correlation by Processing
A Post-FCP

' "pre-FCP. " MeanwC aCompCor 'aCompCorSO

High motion

FD/DVARS correlation Behzadi et al., 2007; Muscheli et al 2014



aCompCor(50) H

aCompCor50

Functional Data I Anatomical MPRAGE | Metrics |
Shee Timing ] P Framewise Displacement (FD)
pre-FCP l Y
processing Motion Realignment Coregistration I
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Normahzation
* Temporal Mask:
Scan with
Detrending | v FO > 0.5mm
[ aCompCor I
[ pre-FCP data | P 264 ROI and Global
DVARS timecourses
Functional Nuis R
Connectivity SV g e MPEC, DMN, and
Preprocessing | P \Visual ROI timecourses
\ v ¢ \ A 2
MeanwcC: aCompCor50: aCompCor:
Mean S0% Variance Top 5 >
CSFAWM CSFNWM PC CSF/wWM PC t mPFC Specifcity
Motion + Derwv| [Motion + Derv| | Motion + Derv Scrubbed |
Data
Spatial Smoothing (6mm FWHM) |

Bandpass Fiterning (0.01 - 0.1 Hz) }




ICA-AROMA H

Participant level

fMRI Preprocessing

Motion correction

4D mean intensity normalization
- ‘ Spatial smoothing {(6mm FWHM)

. ICA-AROMA
- ICA strategy focused on removing =
motion artifacts. ooty
 Uses small set of spatial and et
. maximum RP correlation
temporal rules (4) to define Edge facion
. High-frequency content
motion components: —
: enf::\zl g act :s:eino:s': f?om
1. ngh frequency : the ﬂ\!ﬂRfI dlata'(ffgldrecgﬁn)
2. Correlated with Motion e
Nuisance regression;
Parameters Ok Cr S

Fraction near borders
4. Fraction in CSF

.

Statistical analysis

Pruim et al 2015 Neuroimage



ICA-AROMA

Participant level

fMRI Preprocessing

Motion correction
4D mean intensity normalization
- Spatial smoothing (6mm FWHM)

1 Motion-specific criterion ICA-AROMA

Other
RSN
¥  Motion ICA
Register IC spatial maps
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Motion Component Classification
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Highpass filtering
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Statistical analysis
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ICA-AROMA H

Participant level

fMRI Preprocessing
Motion correction
4D mean intensity normalization
- Spatial smoothing {(6mm FWHM)

ICA-AROMA

ICA
Register IC spatial maps
to MNIT52 2mm

Motion Component Classification

Based on four features:

maximum RP correlation
3 00 E Edge fraction
CSF fraction

High-frequency content

—_— gh y
200¢ fMRI data denoising
Removal of classified ICs from
the fMRI data (fsl_regfilt)
fMRI Preprocessing
Nuisance regression;
0 WM, CSF & linear trend

RS N Moti on Oth er Highpass filtering

500,

# components

A - Statistical analysis
1 Classified as: "Non-motion" .

B Classified as: "Motion"

Pruim et al 2015 Neuroimage



ICA-AROMA H

EX. Sewsory-motor component

ICA-AROMA

24RP regression 1) 24RP regression (2)
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Frequency (Hz) Freguency (Hz)
ICA-AROMA

Spike regression
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Pruim et al 2015 Neuroimage




ICA-AROMA H

EX. Task data

ICA-AROMA

@roup effects
24RP regression Spike regression ICA-AROMA

13 0
Effect size maps (i.e., sensitivity to activation maps)

|Spike regr| - |24RP regr| [ICA-AROMA| - |24RP regr| |ICA-AROMA| - |Spike regr|

13

Pruim et al 2015 Neuroimage



Group differences(green)

ICA-AROMA

RSN map (gray)

Sign. differences per RSN
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ICA-AROMA

ICA-AROMA

Corr W motion

Wean grp corr
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Multi-echo fMRI (remember?)

K spectrum

» Use multi-echo
data and discard
any component
which does not
exhibit the
expected T2 decay

component rank by K



Scrubbing H

“Scrubbing”

Neurolmage 59 (2012) 2142-2154

Contents lists available at SciVerse ScienceDirect

Neurolmage

journal homepage: www.elsevier.com/locate/ynimg

Spurious but systematic correlations in functional connectivity MRI networks arise
from subject motion

Jonathan D. Power **, Kelly A. Barnes 2, Abraham Z. Snyder P,
Bradley L. Schlaggar ™9, Steven E. Petersen ¢

# Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA

" Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA

© Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA

4 Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, M0, USA
¢ Department of Psychology, Washington University in Saint Louis, St. Louis, MO, USA




Scrubbing H

Choice of a cut-off threshold

- From Power et al. (2012): “After studying the plots of
dozens of healthy adults, values of 0.5 mm for
framewise displacement and 0.5% ABOLD for
DVARS were chosen to represent values well above the
norm found in still subjects.”

= Also removed 1 TR before and 2 TRs after bad frame

- Fair et al. (2013) used an even more stringent FD cut-off
of 0.2 mm and DVARS cut-off of 0.4%

» Power et al. (2013) FD 0.2 mm or DVARS 0.3%
- Power et al. (2014) iterative procedure and DVARS 0.2%
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Figure S5: Floors in DVARS and framewise displacement values exist at all age ranges. Data from six relatively still subjects are shown,
including the age, RMS head position, the framewise displacement (FD), and the DVARS calculations on the functional connectivity image. A
floor in FD and DVARS values exists across all ages. Examination of these plots in hundreds of subjects gave rise to the standard thresholds
used in this study to identify periods of movement, indicated by the horizontal black lines in the plots (0.5 mm framewise displacement and

0.5% ABOLD DVARS (5 on the scales of this figure)).

Power et al. (2012) Neurolmage
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50 100 150 200 250 50 100 150 200 250 300 350
Frame # (2.5 sec TR) Frame # (2.5 sec TR)

« Temporal masks (red bars) were augmented by also marking
the frames 1 back and 2 forward

e All removed frames must both:
1) be high-motion frames (based on FD)

2) display evidence of widespread and/ or large amplitude
changes in BOLD signal (based on DVARS)

Power et al. (2012) Neurolmage



Example data processing workflow

“fMRI preprocessing”

“functional connectivity
processing”

“scrubbing”

Data from scanner

\

ii) slice timing correction

i) central spike removal (1.5T only)

iii) rigid body realignment
iv) mode 1000 normalization

¥

Resample to 3 mm isotropic voxels

¥ | FD calculation

Atlas transformation

iii) multiple regression
white matter and derivative
ventricles and derivative
whole brain and derivative

realignment paramaters and derivatives

\

Final functional connectivity image (unscrubbed)

— | DVARS calculation |

\

Temporal mask generation

¥

«<
<«

Application of temporal mask to form
scrubbed functional connectivity image

Power et al. (2012) NeuroIma



Scrubbing

Power
spectra
The order of things matters! s
Pipeline 1 % i 1222 - % Bipeline’2
| §3 500 F E:T’ |

0

Regression

Bandpass filtering L o Bandpass filtering
(0.009 < f < 0.08 Hz) , (0.009 < f < 0.08 Hz)

‘)’ - 1 0
0.009 0.08 0.009 0.08
Frequency (Hz) Frequency (Hz)
— GS — WM — GS

— WM
— GM — CSE — GM —  |/@SE Jo et al. (2013)
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Impact of scrubbing on rs-fMRI data

Subject Subject
ubject 1 ubject 2 Scrubbed r —

A) unscrubbed B) unscrubbed 7 C) UVISGY'(AMOCd r

subjects

35% of data scrubbed out 39% of data scrubbed out

» Scrubbing increases this long-distance correlation in most subjects, does
not substantially alter it in others, and reduces it in a small number of

subjects. Power et al. (2012) NeuroImage
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Impact of scrubbing on rs-fMRI data

A) o2 ' ' ' ' ' ' ' '

Ar produced by
motion scrubbing

0 180
Euclidean distance between ROIs (mm)

« Scrubbing high-motion frames decreases short-distance
correlations and augments long-distance correlations

Power et al. (2012) NeuroImage



e
Spatial distribution of scrubbing on rsfc

Most blue vectors are short/medium range; most red vectors are medium/long range.

top 0.5% |Ar]| top 1% |Ar]| top 2% |Ar|
|Ar| > 0.093 |Ar] > 0.084 |Ar| > 0.075

Power et al. (2012) NeuroImage
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Impact of scrubbing on rs-fMRI data

Cohort 1:
3T children

0.70 after motion scrubbing
0.58 + 0.01 after random scrubbing

Cohort 3:
3T adults

Power et al. (2012) NeuroImage



Scrubbing

S0 is scrubbing the thing?

- Exclusion of TRs might have unwanted effects:
1. Loss of dfs (might/might not be a big deal at 15t Ivl)

Cohort 1: 3T children Cohort 2: 3T adolescents

"

10 DVARS (root mean squared signal derivative over brain mask)
E e
: : n 3f 1
(==
f g 2k A |
2 1_ i
A A A f\ J\[\ Al [/
. (| otwwwwuuwww WXV WM AT W
Proportion of data removed by scrubbing Proportion of data removed by scrubbing o] 20 40 50 80 100 120 140 160 180
timepoints
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)
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Figure S7: The impact of scrubbing on data retention. For each cohort analyzed in this report, the proportion
of data removed within each subject is plotted as a histogram. More data was removed in younger subjects,
who tended to move more than older subjects (see Table 1). All subjects had more than 125 frames (~5 min) of

data remaining after scrubbing. Power et al. (2012) NeurOImage
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S0 is scrubbing the thing?

- Exclusion of TRs might have unwanted effects:
1. Loss of dfs (might/might not be a big deal at 15t Ivl)

2. Uneven loss of dfs across groups/conditions
- Randomly remove equal # of TRs from ‘good’ runs?
» Turns out, that might be problematic too (A)

-+ Using interpolations to “impute” excised data is also
problematic (B)
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S0 is scrubbing the thing?

- Exclusion of TRs might have unwanted effects:
1. Loss of dfs (might/might not be a big deal at 15t Ivl)
2. Uneven loss of dfs across groups/conditions

3. Destroys autocorrelation structure (Lose the ability
to perform any frequency-based analysis)
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So, which one should | use?
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An evaluation of the efficacy, reliability, and sensitivity of motion correction
strategies for resting-state functional MRI
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Linden Parkes , Ben Fulcher, Murat Yiicel, Alex Fornito

Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Victoria, Australia

ARTICLE INFO ABSTRACT

Keywords: Estimates of functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI)
fMRI are sensitive to artefacts caused by in-scanner head motion. This susceptibility has motivated the development of
Functional connectivity numerous denoising methods designed to mitigate motion-related artefacts. Here, we compare popular retro-
Resting-state spective rs-fMRI denoising methods, such as regression of head motion parameters and mean white matter (WM)
Motion

and cerebrospinal fluid (CSF) (with and without expansion terms), aCompCor, volume censoring (e.g., scrubbing
and spike regression), global signal regression and ICA-AROMA, combined into 19 different pipelines. These
pipelines were evaluated across five different quality control benchmarks in four independent datasets associated

Noise
Artefact
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Table 2
Characteristics of 19 denoising pipelines analysed here.

Pipeline Noise corrections methods No. of regressors
1 6HMP 6
VV\()—HZ@@ 6HMP + 2Phys 8
3 6HMP-+2Phys+GSR 9
24HMP 24
EXP“ V]QI 24HMP+8Phys 32
WA O‘FR@@ 24HMP+8Phys+4GSR 36
7 muulp\_.ul 34
8 24HMP-+aCompCor50 24-+k
a COW\]j’COY' 24HMP-+aCompCor-+4GSR 38
10 24HMP+aCompCor50+4GSR 28+k
11 12HMP+aCompCor (Muschelli et al., 2014) 22
12 12HMP+aCompCor50 (Muschelli et al., 2014) 12+k
13 ICA-AROMA+2Phys (Pruim et al., 2015b) 2+k
ICA-AROMA+2P+GSR 3+k
ICA ‘A}EO MA ICA-AROMA + 8Phys 8k
16 ICA-AROMA + 8P+ 4GSR 12+k
17 24HMP+8Phys+4GSR+SpikeReg 36+k
18 24HMP+8Phys+4GSR+JP12Scrub 36+k
19 24HMP+4Phys+2GSR+JP14Scrub 30+k

Notes. HMP, head motion parameters. Phys, average white matter (WM) and cerebrospinal
fluid (CSF) signals. GSR, global signal regression. aCompCor, anatomical component
correction using top the 5 components in each of WM and CSF compartments. aComp-
Cor50, anatomical component correction using enough components to explain 50% of the
variance in each of WM and CSF compartments. SpikeReg, spike regression. JP12Serub,
basic scrubbing. JP14Scrub, optimized scrubbing. k denotes an arbitrary number of addi-
tional regressors estimated automatically by the denoising method and which can vary
from person to person.

Parkes et al 2018 Neuroimage

Summary of quality control metrics.

Quality control
benchmark

Summary

References

QC-FC correlations

QC-FC distance-
dependence

Motion-BOLD
contrasts

high-motion vs low-

motion contrasts
(HLM contrasts)

FD-DVARS
correlations

tDOF-loss

Test-retest
reliability (TRT)

The cross-subject correlation
between framewise
displacement (FD) and
functional connectivity at
each pair of regions after noise
correction.

The dependence of QC-FC
correlations on the distance
between brain regions.
Statistical parametric
mapping of the association
between FD and voxelwise
BOLD time courses, to identify
regions showing significant
motion contamination.

The mean difference in
functional connectivity
between healthy control
participants split into high-
and low-motion subgroups
The cross-subject correlation
between motion and the
temporal Derivative of root
mean square VARiance over
voxelS (DVARS), which
indexes the rate of change of
BOLD signal across the entire
brain between consecutive
time points.

The loss in temporal degrees
of freedom (tDOF) sustained
due to noise correction,
calculated as the number of
nuisance regressors input to
the general linear model used
to model noise in the BOLD
data.

The test-retest reliability of
functional connectivity,
quantified using intraclass
correlation coefficients in
longitudinally acquired data.

(Ciric et al., 2017; Power
et al., 2015, 2012;
Satterthwaite et al., 2013,
2012)

(Ciric et al., 2017; Power
et al., 2012; Satterthwaite
et al., 2012)

(Yan et al., 2013a)

(Pruim et al., 201 5a;
Satterthwaite et al., 2013;
Van Dijk et al., 2012)

(Muschelli et al., 2014)

(Ciric et al., 2017; Yan
et al., 2013a)

(Bim et al., 2014; Van Dijk
et al, 2012; Yan et al.,
2013a)
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So, which one should | use?

“To @01@@5 <till correlated with motion &

A) Beijing dataset 'cow@laﬂom lo'@erc@vn 'FC ﬁ\/lﬂl'W\O‘\’lOVl

6HMP 68.42 - — =T 0.18
HMP 6HMP+2Phys 36.50 - e " 0.12
B6HMP+2Phys+GSR 10.69 - e 0.06
24HMP 68.00 - ——l— (.18
Expanded HMP 24HMP+8Phys 30.55 - — e — 0.10
24HMP+8Phys+4GSR 9.63 A — = 0.06
24HMP+aCompCor 11.35 oA 0.06
0 24HMP+aCompCor+4GSR 8.55 1 ! 0.06
€  aCompCor 24HMP-+aCompCor50 10.71 1 0.06
S 24HMP+aCompCor50+4GSR 7.08 4 i 0.05
Q 12HMP+aCompCor 11.86 - 2 0.06
o 12HMP-+aCompCor50 10.60 - i1 0.06
ICA-AROMA+2Phys 15.73 - e 0.08
ICA-AROMA+8Phys 15.09 A —— 0.07
ICA-AROMA+8Phys+4GSR 9.57 - ™ — 0.06
. 24HMP+8Phys+4GSR+SpikeReg {.. Tmocsr] 2441 e 0.06
Censoring 24HMP+8Phys+4GSR+JP12Scrub fit | L=t NaGSR| a8y T 0.06
24HMP+4Phys+2GSR+JP14Scrub (97%) §os  Li....! 10.37 e 0.06

0 50 100 -0.5 0 0.5 1

0B\ AND Aatacat QC-FC uncorrected (%) QC-FC (Pearson's )
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So, which one should | use?

No pipeline reduces corrs to 0

Head Motion Param approaches were the
worst ones

aCorrComp50 worked well with low
motion, but not well with more motion

Scrubbing worked typically the best
ICA-AROMA second best

High wotion dataset

A) Beijing dataset

0.18
HMP 0.12
0.06
0.18
Expanded HMP{ 0.10
0.06
0.06
8 006

e X
= 8GompCorn 24HMP+aCompCor50+4GSR 0.05
o 12HMP+aCompCor 0.06
a 12HMP+aCompCor50 0.06
0.08
0.06
ICA-AROMA, 0.07
0.06
24HMP+8Phys+4GSR+SpikeReg 0.06
09"50”"9{ 24HMP+8Phys+4GSR+JP12Scrub 0.06
24HMP+4Phys+2GSR+JP14Scrub (97 %) 0.06

0 50 100 -0.5 0 0.5 1
= 9 = '
B) CNP dataset QC-FC uncorrected (%) QC-FC (Pearson's r)

lenient exclusion

HMP{

Expanded HMP

{
{
{

Pipelines

ICA-AROMA

Censoring

C) CNP dataset
stringent exclusion

HMP:

Expanded HMP

{
{
{

Pipelines

ICA-AROMA.

Censoring

24HMP+8Phys+4GSR
24HMP+aCompCor
24HMP+aCompCor+4GSR

24HMP-+aCompCor50 |
24HMP+aCompCor50+4GSR |

24HMP+8Phys+4GSR+SpikeReg (90%
24HMP+8Phys+4GSR+JP12Scrub (72%)
24HMP+4Phys+2GSR+JP14Scrub (61%)

6HMP (91%)

6HMP-+2Phys (91%)

BHMP+2Phys+GSR (91%)

24HMP (91%

24HMP+8Phys (91%)
24HMP+8Phys+4GSR (91%)
24HMP+aCompCor (91%)
24HMP+aCompCor+4GSR (91%)
24HMP+aCompCor50 (91%
24HMP+aCompCor50+4GSR (91%;
12HMP+aCompCor (91%)
12HMP+aCompCor50 (91%)
ICA-AROMA+2Phys (91%)
ICA-AROMA+2Phys+GSR (91%;
ICA-AROMA+8Phys (91%)
ICA-AROMA+8Phys+4GSR (91%)
24HMP+8Phys+4GSR+SpikeReg (90%)
24HMP+8Phys+4GSR+JP12Scrub (72%)
24HMP+4Phys+2GSR+JP14Scrub (61%)
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Stringent subject selection (subs with < 4 win of data after scrubbivg) works bestll

CNP dataset . . , ;
6HMP (61%) 35.96 4 —t e 0.19 -0.084
HMP{ 6HMP+2Phys (61%) 17.55+ e (0.14 | } -0.104
6HMP+2Phys+GSR (61%) 6251 | === 0.08]| -0.204
24HMP (61%) 24.22 1 —l— 0.16 | | -0.024
Expanded HMP{ 24HMP+8Phys (61%) 12.85{ | =i 0.12]| } -0.044
24HMP+8Phys+4GSR (61%) 4591 | =—=I=>— 0.08 -0.124
24HMP+aCompCor (61%) 5.551 : 0.08 -0.031
8 24HMP+aCompCor+4GSR (61%) 4.54 - 0.08( t -0.114
c aCompCor 24HMP+aCompCor50 (61%) 5.47 1 0.08]| F -0.054
D 24HMP+aCompCor50+4GSR (61%) 4,331 0.08| -0.11-
o 12HMP+aCompCor (61%) 6.28 - : 0.09| ¢t -0.07-
o 12HMP+aCompCor50 (61%) 5.904 i 0.08]| ¢ -0.09
ICA-AROMA+2Phys (61%) 7901 | =< 0.09]| | -0.044
ICA-AROMA+8Phys (61%) 7414 | =TT (.09 -0.04-
ICA-AROMA+8Phys+4GSR (61%) 7.231 | (.09 -0.024
24HMP+8Phys+4GSR+SpikeReg (61%) 4.291 '1 0.08 -0.064
Censoring{ 24HMP+8Phys+4GSR+JP12Scrub (61%) 4,51 i 0.08 -0.114
24HMP+4Phys+2GSR+JP14Scrub (61%) 6.461 is 0.09 -0.064

0 50 -0.5 0 0.5 -0.5 0 0.5

QC-FC: uncorrected (%) Pearson's r dist. dep. (rho)
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Loss of degrees of freedom

A) Beijing dataset ' . B) CNP dataset .
6HMP 6.00 1 6HMP 6.00 1
6HMP+2Phys 8.00 1 6HMP+2Phys 8.00 1
6HMP+2Phys+GSR 9.00 - 6HMP+2Phys+GSR 9.00 1
24HMP 24.00 1 24HMP 24.00 4
24HMP+8Phys 32.00 1 24HMP+8Phys 32.00 +
24HMP+8Phys+4GSR 36.00 A 24HMP+8Phys+4GSR 36.00 1
24HMP+aCompCor 34.00 1 24HMP+aCompCor 34.00 1
o 24HMP+aCompCor+4GSR 38.00 - o 24HMP+aCompCor+4GSR 38.00 +
£ 24HMP+aCompCor50 66551 ¢€ 24HMP+aCompCor50 59.10
) 24HMP+aCompCor50+4GSR 70551 © 24HMP+aCompCor50+4GSR 63.10
-09_' 12HMP+aCompCor 22.00 1 09_' 12HMP+aCompCor 22.00
12HMP+aCompCor50 54.55 1 12HMP+aCompCor50 47.10
ICA-AROMA+2Phys 20.14 1 ICA-AROMA+2Phys 15.40 4
ICA-AROMA+2Phys+GSR 21.14 - ICA-AROMA+2Phys+GSR 16.40 4
ICA-AROMA+8Phys 26.14 1 ICA-AROMA+8Phys 21.40 +
ICA-AROMA+8Phys+4GSR 30.14 - ICA-AROMA+8Phys+4GSR 25.40 -
24HMP+8Phys+4GSR+SpikeReg 36.99 - 24HMP+8Phys+4GSR+SpikeReg (90%) §oy v, 40.05 A
24HMP+8Phys+4GSR+JP12Scrub b1z ";-l 41694 24HMP+8Phys+4GSR+JP12Scrub (72%) :““ 43.38 -
24HMP+4Phys+2GSR+JP14Scrub (97%) §.. et 41874 24HMP+4Phys+2GSR+JP14Scrub (61%) §.... 37.93 1
50

0 100 0 50 100
tDOF-loss (# regressors) tDOF-loss (# regressors)
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“lo sigm cown in High motion v Low Wotion individuals

A) Beijing dataset

6HMP }

6HMP+2Phys |
6HMP+2Phys+GSR }
24HMP |

24HMP+8Phys |
24HMP+8Phys+4GSR |
24HMP+aCompCor }
24HMP+aCompCor+4GSR |
24HMP+aCompCor50 |
24HMP+aCompCor50+4GSR |
12HMP+aCompCor |
12HMP+aCompCor50 }
ICA-AROMA+2Phys
ICA-AROMA+2Phys+GSR |
ICA-AROMA+8Phys
ICA-AROMA+8Phys+4GSR |

Pipeline

24HMP+8Phys+4GSR+SpikeReg

24HMP+8Phys+4GSR+JP12Scrub |
24HMP+4Phys+2GSR+JP14Scrub (97%)

80 60 40 20 0 20 40
Sianificant connections (%)

Low=High

High>Low
4
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B) CNP dataset
Ienlent exclusion 6HMP F40. 0.03
6HMP+2Phys 14, 0.171
6HMP+2Phys+GSR | 5. 2.38
24HMP | 0.011
24HMP+8Phys 0.081
24HMP+8Phys+4GSR | 1.921
24HMP+aCompCor 0.267
® 24HMP+aCompCor+4GSR | 2.121
£ 24HMP+aCompCor50 r 0.344
2 24HMP+aCompCor50+4GSR } 1.551
T 12HMP+aCompCor | 9. 0.524
12HMP+aCompCor50 | 7. 0.501
ICA-AROMA+2Phys I 4. 0.611
ICA-AROMA+2Phys+GSR 2. 2.29
ICA-AROMA+8Phys 0.691
ICA-AROMA+8Phys+4GSR | 2.581
24HMP+8Phys+4GSR+SpikeReg (90%) 2.261
24HMP+8Phys+4GSR+JP12Scrub (72%) 1.471
24HMP+4Phys+2GSR+JP14Scrub (61%) ‘ 0 80

80 60 40 20 0 20 40
Significant connections (%)

C) CNP dataset .
stringent exclusion BHMP (91%) -39. 0.04]
6HMP+2Phys (91%) F14. 0.28
B6HMP+2Phys+GSR (91%) | 5. 2.761
24HMP (91%) | 0.03;
24HMP+8Phys (91%) | 0.101
24HMP+8Phys+4GSR (91%) | 2.161
24HMP+aCompCor (91%) | 0.351
o  24HMP+aCompCor+4GSR (91%) | 3. 2.081
< 24HMP+aCompCor50 (91%) | 0.201
@ 24HMP+aCompCor50+4GSR (91%) | 3. 1.651
h‘-_l 12HMP+aCompCor (91%) | 7. 0.661
12HMP+aCompCor50 (91%) | 8. 0.341
ICA-AROMA+2Phys (91%) | 4. 0.451
ICA-AROMA+2Phys+GSR (91%) | 2.501
ICA-AROMA+8Phys (91%) | 0.57-
ICA-AROMA+8Phys+4GSR (91%) | 2.67-
24HMP+8Phys+4GSR+SpikeReg (90%) | 2.261
24HMP+8Phys+4GSR+JP12Scrub (72%) } 1.47-
24HMP+4Phys+2GSR+JP14Scrub (61%) | 0.801
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-« HMP + Phys models without GSR are ineffective at mitigating motion-
related artefact regardless of the level of motion, exclusion criteria applied,
or the use of expansion terms

« GSR dramatically improves the performance of the pipelines

- aCompCor pipelines may only be viable in low-motion datasets and perform
poorly in high motion data

- ICA-AROMA & censoring pipelines are superior to other strategies, with the
lowest QC-FC correlations, lowest QC-FC distance-dependence, & minimal
differences between high- and low-motion healthy controls

- Censoring performs well because it excludes Ss with <4 min of uncensored
data. When this criterion is applied to all pipelines, performance differences
are marginal (except HMP pipel without GSR)

- aCompCor and censoring pipelines yield high tDOF-loss.

- Methods that were more effective at denoising were associated with reduced
test-retest reliability, suggesting that noise signals in BOLD data are
reproducible.
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- Head motion regression: this strategy is not effective even in low-
motion datasets, unless GSR is also applied. “[Alnalyses that rely on HMP
models alone are likely to be heavily contaminated by motion.”

» GSR: led to major improvements in QC-FC correlations for HMP &
aCompCor, and (though little) for ICA-AROMA pipelines. However,
controversial, leads to false anti-correlations. Need more work..

- aCompCor/aCompCors;o0: outperform HMP & Phys models (but best in
low-motion data), not as effective in high-motion data, but as effective as
ICA-ARMOA/Scrubbing if you drop high motion Ss. High loss of DOFs.

- ICA-AROMA: performed well across all datasets. Less in high-motion data
but still more effective than HMP and aCompCor/aCompCor50.
Robust/consistent results with slightly different pipelines.

- Censoring (i.e., scrubbing): the primary advantage of censoring is
exclusion of Ss with high FDs. Applying same criterion increased
dramatically all pipelines. However, distorts the temporal properties of the
data, precluding analysis of time-resolved dynamics
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- Description of the problem:

= Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. (2012)
Spurious but systematic correlations in functional connectivity MRI
networks arise from subject motion. Neuroimage 59(3):2142-54

» Van Dijk KR, Sabuncu MR, Buckner RL. (2012) The influence of head motion
on intrinsic functional connectivity MRI. Neuroimage. 59(1):431-8.
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H, Gur RC, Gur RE. (2012) Impact of in-scanner head motion on multiple
measures of functional connectivity: relevance for studies of
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= Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., &

Petersen, S. E. (2014). Methods to detect, characterize, and remove motion
artifact in resting state fMRI. Neuroimage, 84, 320-341.
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« What can we do about it?

= Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB,
Hakonarson H, Gur RC, Gur RE, Wolf DH. (2013) An improved framework for confound
regression and filtering for control of motion artifact in the preprocessing of resting-state
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Reading list (iii)

- For task based analyses

o Christodoulou AG, Bauer TE, Kiehl KA, Feldstein Ewing SW, Bryan AD,
Calhoun VD. (2013) A quality control method for detecting and suppressing
uncorrected residual motion in fMRI studies. Magn Reson Imaging.

31(5):707-17.

= You can find the list (with PubMed links) here:
http://montilab.psych.ucla.edu/fmri-wiki



http://www.ncbi.nlm.nih.gov/pubmed/23290482
http://montilab.psych.ucla.edu/fmri-wiki

